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초 록

딥러닝의 발전은 다양한 분야에 혁신을 가져왔으나, 이러한 모델을 실제 환경에 배포하기 위해서는 방대한
양의 데이터를 중앙에 집결시켜야 하는 문제점이 존재하며, 이는 개인 정보 보호와 확장성 측면에서 중대
한 이슈를 야기한다. 연합학습(Federated Learning, FL)은 데이터 공유 없이 분산된 클라이언트 장치에서
직접 협력적으로 모델을 학습하여 이 문제를 해결할 수 있다. 그러나 FL의 실질적 활용은 여전히 상당한
통신 오버헤드, 비효율적인 계산, 클라이언트의 이질성 및 개인화 요구 수용의 어려움으로 인해 제한적이
다. 본 논문은 이러한 장애 요인들을 세 가지 상호 연결된 연구로 체계적으로 해결한다. 먼저, Chapter 1
에서는 전체 모델 파라미터 대신 간결한 유사도 기반의 피트니스 메트릭만을 교환하여 통신 부하를 획기적

으로 감소시키는 진화전략 기반의 새로운 FL 기법인 EvoFed를 제안한다. 효율적 통신이라는 개념을 더욱
발전시켜, Chapter 2에서는 모델 전체 파라미터 공간을 저랭크(low-rank) 방식으로 분해하여 통신과 계산
자원을 동시에 최적화하는 모델 독립적 프로젝션 적응법(Model-Agnostic Projection Adaptation, MAPA)
을 제안한다. 나아가 이질적인 클라이언트 환경에서 개인화된 성능 향상의 필요성을 인식하여, Chapter 3
에서는 특이값 분해(SVD)를 활용해 클라이언트별 모델 업데이트를 정렬함으로써 클라이언트 드리프트를
효과적으로 완화하고 추가적 통신 부담 없이 개인화를 향상시키는 Principal-Aligned LoRA (PA-LoRA)를
개발한다.

이러한 혁신들을 통합한 본 논문의 방법론은 효율적이고 확장 가능하며 개인화된 연합학습의 실용적

프레임워크를 제공하여, 개인 정보가 민감하거나 자원이 제한된 환경에서도 광범위한 FL 배포를 가능하게
한다.

핵 심 낱 말 연합학습, 통신 효율성, 저랭크 적응, 모델 정렬

Abstract
Advances in deep learning have revolutionized numerous fields, yet deploying these models often requires
aggregating massive datasets in a central location, raising critical privacy and scalability concerns. Fed-
erated Learning (FL) addresses this by enabling collaborative model training directly on distributed
client devices without sharing private data. However, practical adoption of FL remains constrained
by substantial communication overhead, computational inefficiencies, and difficulties in accommodating
client heterogeneity and personalization. This thesis systematically addresses these barriers through
three interconnected contributions. First, in Chapter 1, we introduce EvoFed, a novel evolutionary-
strategy-based FL method that drastically reduces communication by exchanging compact fitness-based
similarity metrics instead of full model parameters. Building on this concept of efficient communication,
we extend our approach in Chapter 2 by proposing Model-Agnostic Projection Adaptation (MAPA), a
unified low-rank factorization method that compresses the entire model parameter space, further opti-
mizing both communication and computational resources. Recognizing the need to address personal-
ization in heterogeneous client settings, in Chapter 3, we develop Principal-Aligned LoRA (PA-LoRA),
a personalized FL approach leveraging Singular Value Decomposition (SVD) to align client-specific up-
dates, effectively mitigating client drift and enhancing personalization without additional communication
overhead. Collectively, these innovations form a coherent and practical framework, significantly advanc-
ing the efficiency, scalability, and personalization capabilities of federated learning, paving the way for
widespread deployment in privacy-sensitive and resource-constrained environments.

Keywords Federated Learning, Communication Efficiency, Low-Rank Adaptation, Model Alignment
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Introduction

The exponential growth of data and computational capabilities has accelerated advancements in arti-
ficial intelligence, enabling unprecedented progress in machine learning and, in particular, deep learning.
Centralized learning frameworks, while powerful, inherently require data consolidation, raising substan-
tial privacy, security, and regulatory concerns. Federated Learning (FL) has emerged as a transformative
paradigm, designed to address these concerns by enabling distributed model training across decentralized
data sources. In FL, multiple clients collaboratively train models locally, sharing only model updates
rather than raw data, thereby enhancing data privacy and reducing risks associated with centralized
data storage.

Despite its significant promise, the practical deployment of FL faces notable challenges, particularly
related to communication efficiency, client heterogeneity, and model personalization. Communication
overhead, resulting from frequent and large model updates, restricts the feasibility of FL for resource-
constrained clients and networks. Moreover, client heterogeneity—manifesting as diverse data distribu-
tions, computational resources, and learning objectives—introduces critical alignment and convergence
issues. Addressing these challenges requires innovative solutions that optimize communication, efficiently
align decentralized models, and effectively personalize large-scale models for individual clients.

This thesis comprehensively addresses these fundamental challenges by developing novel method-
ological frameworks and techniques across three interconnected chapters:

• Chapter 1 provides foundational context, critically reviews existing methods, and outlines key
limitations in current FL frameworks, emphasizing communication bottlenecks, alignment diffi-
culties arising from model parameter symmetries, and the challenge of effectively personalizing
pre-trained large-scale models.

• Chapter 2 introduces Model-Agnostic Projection Optimization (MAPO), a flexible, uni-
versal framework aimed at significantly enhancing communication efficiency. MAPO transcends
architecture-specific constraints through a unified, model-level gradient decomposition approach.
It dynamically explores subspace optimization strategies, leveraging random matrix reinitialization
to efficiently balance communication overhead with convergence performance, validated through
rigorous theoretical analyses and extensive empirical evaluations.

• Chapter 3 presents Aggregation of Principals in Low-rank via SVD (APriLS), address-
ing the critical misalignment problem encountered in federated low-rank adaptation strategies,
particularly LoRA. APriLS employs singular value decomposition (SVD) to implicitly align client
parameters, significantly mitigating alignment issues caused by permutation and transformation
symmetries inherent in neural networks. APriLS ensures robust convergence, enables effective
personalization, and substantially reduces communication frequency, demonstrated through com-
prehensive theoretical and experimental validation.

Collectively, these contributions offer transformative advancements to the field of federated learning,
providing robust, scalable, and efficient solutions essential for practical deployment across diverse real-
world scenarios.

1



Chapter 1. Evolutionary Strategies as Low-rank Compression

1.1 Introduction

Federated Learning (FL) provides a decentralized machine learning framework that enables model
training across many devices, known as clients, without needing to collect and process sensitive client
data on the centralized server [1]. The typical FL process begins with each client downloading an identical
initialized model from a central server, performing model updates with local data, and then uploading
the updated local model for the next communication round. Subsequently, the server combines the
uploaded models to refine the global model, typically using a technique like FedAvg [2]. This iterative
cycle repeats for a fixed number of rounds, ensuring collaborative model improvement across clients.

Although FL provides notable benefits, such as a certain level of privacy preservation and the
utilization of diverse data sources, one of the major challenges associated with FL is the significant com-
munication overhead involved in transmitting model updates between clients and the server, especially
when dealing with models that have a large number of parameters.

Various strategies have been developed to mitigate the communication burden in FL. These tech-
niques can be broadly classified into three categories: i) Compressing updates: sparsification [1], struc-
tured updates [3], and quantization [4, 5] reduce the size of transmitted model updates, ii) Local com-
putation: performing multiple local epochs at the clients [6] lessens the frequency of communication
with the server, and iii) Advanced aggregation methods and client selection: MOCHA [7] enhances the
efficacy of update aggregation and [8, 9] reduce communication by only selecting a subset of clients to
participate in each training round.
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Figure 1.1: ES follows an iterative ask, evaluate, and tell approach for optimization. The strategy starts by
generating candidate solutions of a base model(ask), which are then assessed using a fitness measure (evaluate).
The base model is updated towards a better solution using the evaluation results (tell).

Motivation. Existing FL techniques primarily rely on transmitting gradient signals or model
updates, which are computed through backpropagation (BP). On the other hand, Evolutionary Strategies
(ES) [10–12] update model parameters by utilizing fitness values obtained from evaluating a population
of models. This approach eliminates the need for a gradient signal, as depicted in Figure 1.1. Recent
advances in neuroevolution have shown promise in supervised settings and competitive performance with
reinforcement learning in control tasks [13–18]. In this context, ES offers a distinct advantage compared
to traditional BP methods.
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Figure 1.2: Test accuracy on FMNIST dataset comparing (a) ES against BP, and (b) PBGE with BP
and Sparse with 98.8% compression.

This paradigm shift opens up the possibility of searching for novel solutions beyond the gradient-
based methods. However, it is critical to note that ES, despite its potential, still lags behind gradient-
based methods in certain problems like supervised learning. Fig. 1.2(a) reveals the performance gap
between ES and BP. This emphasizes the need for a balanced approach that would leverage the strengths
of both ES and gradient-based methods to achieve optimal results.

Our proposed method operates on the premise of incorporating high-quality gradient signals into
the evaluation process of ES. The process can be formalized as follows:

Given a base model, denoted by θ, we instantiate a population P comprised of N model samples.
Each individual sample, θi, is derived by adding random perturbations to θ. Unlike traditional ES,
where the fitness of θi corresponds to its performance on the task, we instead assess the fitness of each
sample θi by measuring its similarity to θ′, the model parameters updated through gradient descent
steps. This operation effectively exploits the gradient signal to construct a fitness vector, a process we
term Population-Based Gradient Encoding (PBGE). Fig. 1.2(b) shows the results of a representative
experimental setting where PBGE is able to follow BP closely on the FMNIST dataset while maintain-
ing an effective compression rate of over 98.8%. In particular, this method significantly outperforms
sparsification strategies at equivalent compression rates.

In the context of FL, the gradient signal can be encoded into a fitness vector for the population
of models and communicated to the server. For global synchronization, a well-established approach
like FedAvg would involve reconstruction and aggregation of the clients’ models and sharing of the
aggregated model with the clients. However, by utilizing shared random seeds, we can ensure uniformity
in the generated populations between clients and the server. This allows us to transmit and aggregate
only the small fitness vectors without reconstructing the models, reinforcing communication efficiency.
In addition, there is an advantage in implementing extra privacy measures. When encryption is desired,
the required overhead would be much smaller with the fitness vectors than with the model parameter
vectors because of the size difference. A brief overview of EvoFed is shown in Fig. 1.3 (the detailed
methodology is provided in Section 1.4).

Contributions. To summarize, our main contribution is to introduce a novel concept of Population-
Based Gradient Encoding (PBGE), which allows an accurate representation of the large local gradient
vector using a relatively small fitness vector, significantly reducing the communication burden as well as
the encryption overhead in FL environments. We also propose and verify the EvoFed framework that
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integrates PBGE into federated learning based on the exchange and aggregation of the fitness vectors
between clients and the server.

Our approach achieves similar performance to FedAvg on both FMNIST and CIFAR-10 datasets.
The advantage is that our scheme achieves very high compression, exceeding 98.8% on FMNIST and
99.7% on CIFAR-10 in key practical settings. Significantly, our EvoFed model also outperforms tradi-
tional compression methods, offering superior results at similar compression rates. The price we pay is
the overhead of generating a population of perturbed models and computing similarity measures. This
overhead could be substantial in the form of increased local processing time depending on the size of
the population, but the client computational load can be traded with local memory space by employing
parallel processing. In addition, as discussed later, reduce population size without affecting performance.
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①
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Figure 1.3: Overview of the proposed EvoFed: (1) Using the shared random seed, each client generates a
population of perturbations around the local model. Each client also performs a gradient update of the local
model using the local data as in conventional FL. (2) Each client evaluates the fitness of each perturbed model
with respect to the updated model. The fitness values are communicated to the server. (3) The server aggregates
the fitness values. Clients update their local models using broadcast aggregated fitness.

1.2 Related Work

Federated Learning. Several techniques have been proposed to alleviate the communication
overhead in FL, such as model compression [1, 19, 20], distillation techniques [21–25], and client up-
date subsampling [26, 27]. However, these approaches often come with trade-offs, including increased
convergence time, lower accuracy, or additional computational requirements. More importantly, they
still require the exchange of model parameters, which requires substantial communication bandwidth.
Furthermore, [28] shows that the gradient sparsity of all participants has a negative impact on global
convergence and communication complexity in FL.

Evolutionary Strategies. ES are black-box optimization algorithms inspired by biological evolu-
tion [29]. ES algorithms iteratively refine a population of solutions based on fitness evaluations. Natural
Evolution Strategies (NES) is a specific variant of ES [12, 30–35]. Within the NES framework, the dis-
tribution pψ(θ), parameterized by ψ, is adopted to represent the population and maximize the average
objective value Eθ∼pψ [f(θ)] via stochastic gradient ascent, where f(θ) is the fitness function. NES algo-
rithms leverage a score function estimator as in [10]. Our method follows the guidelines provided by [36],
where the parameter distribution pψ is a factored Gaussian. Accordingly, we can represent Eθ∼pψ [f(θ)]
using the mean parameter vector θ, such that Eθ∼pψ [f(θ)] = Eϵ∼N (0,I)[f(θ+σϵ)]. Given a differentiable
function estimator, the well-known conversion procedure allows optimization over θ to be rewritten as
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(see, for example, [11, 37,38])

∇θEϵ∼N (0,I)[f(θ + σϵ)] = 1
σ
Eϵ∼N (0,I){f(θ + σϵ)ϵ}. (1.1)

The strategy of sharing seeds for random number generators to synchronize parallel processes and
maintain consistency is a well-established practice in areas ranging from parallel simulations to crypto-
graphic protocols [39]. The appeal of shared random seeds stems from their ability to offer deterministic
randomness, ensuring that multiple entities, operating independently, can produce synchronized and
identical random outputs. Within the realm of ES, this concept was effectively harnessed by [36] to
address the challenge of scalability. We also utilize the shared random seeds to scale down the commu-
nication load in a distributed setting. However, the key difference is that the work of [36] distributes
the perturbations into multiple workers dealing with a single global objective, whereas our method gen-
erates identical perturbations across all clients, with each having a distinct objective. An important
consequence is that with our method, each client only needs to communicate N fitness values to update
the model, instead of MN values in [36] with M denoting the number of nodes, enabling scalability
regardless of the number of clients.

Federated Learning and Evolutionary Strategies. Several studies have explored the opti-
mization of FL using ES. For instance, [40] introduced an evolutionary approach for network architec-
ture search (NAS) in real-time FL, which minimizes local payload while optimizing model performance.
Sparse evolutionary training (SET) [41] substitutes fully connected layers in neural networks with sparse
layers to decrease the number of model parameters. Furthermore, [42] presented the SET algorithm
that optimizes neural networks in FL via a bi-objective method to maximize accuracy performance while
minimizing communication overhead. Additionally, [43] introduces the MOEA/D framework [44] to the
environment of FL and FLEA [45] utilized Evolutionary Algorithms in FL setup at the client-level to
evolve models.

While these studies have made significant contributions, the present work establishes a unique way
of using ES as a method to reduce communication overhead in FL by transmitting fitness values instead
of model parameters. In particular, the new gradient-driven fitness function essentially separates our
work from the traditional utilization of ES for compression.
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Figure 1.4: Illustration of one update step of typical ES and the proposed Population-Based Gradient Encoding
(PBGE) strategy. Left: using loss value L(θ) directly for the fitness f(θ), as in existing ES, leads to an inherently
noisy estimate of the gradient signal ∇θEϵ[f(θ + σϵ)] due to the noisy loss surface. Right: PBGE defines fitness
as the distance to the updated model θ′ obtained through BP (i.e., f(θ) = −||θ − θ′||22). This enables the reliable
estimate of θ′ on the convex surface. By sampling a sufficient number of perturbations ϵi, a decent gradient
signal can be obtained, which aligns to the true gradient signal ∇θL(θ) computed from the BP.
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1.3 Population-Based Gradient Encoding

This work focuses on the process of encoding gradient information through an identical population
of models generated at both ends of some network link. Population distribution is a zero mean isotropic
multivariate Gaussian with fixed covariance σ2I. We also adopt ‘mirrored sampling’ [46,47] for variance
reduction where the Gaussian noise vector ϵ is instantiated with pairs of perturbations ϵ, −ϵ.

Given the reference point θ′ = θ − η∇L(θ) where η is the learning rate in the BP-based gradient
update and ∇L(θ) represents the gradient derived from the data, we define the fitness function f(θ) to
measure the similarity between the model parameters θ and θ′: f(θ) = −||θ − θ′||22. This choice ensures
that the gradient of the expectation, ∇θEϵ∼N (0,I)[f(θ + σϵ)], aligns with the actual gradient ∇L(θ),
effectively encoding the gradient information in the fitness values:

∇θEϵ∼N (0,I)[−||(θ + σϵ)− θ′||22] = −∇θ||θ − θ′||22 = 2(θ − θ′) (1.2)

where the first equality simply follows from the assumption that ϵ is zero-mean. The visual repre-
sentation of this process is illustrated in Fig. 1.4. Eq. 1.2 gives θ′ = θ − 1

2∇θEϵ[−||(θ + σϵ)− θ′||22], and
comparing with the BP operation θ′ = θ − η∇L(θ), we have

η∇θL(θ) = 1
2∇θEϵ∼N (0,I)[−||(θ + σϵ)− θ′||22].

Now also utilizing Eq. 1.1, we write

η∇θL(θ) = 1
2σEϵ∼N (0,I){f(θ + σϵ)ϵ} (1.3)

where f is the specific distance-based fitness function defined above. Approximating the expectation by
sampling, we further write

η∇θL(θ) ≈ 1
2Nσ

N∑
i=1

f(θ + σϵi)ϵi (1.4)

which shows how the gradient update information can be encoded using the fitness values f(θ + σϵi)
corresponding to the perturbations ϵi. Consequently, this removes the need to evaluate each perturbation
with the dataset, as is done in existing ES, and the entire update process is encoded with low-cost distance
measurement.

Finally, the update on θ itself based on the fitness values is naturally given by

θ′ ≈ θ + 1
2Nσ

N∑
i=1

f(θ + σϵi)ϵi (1.5)

allowing a remote model update based on the transmitted f(θ + σϵi) values with the shared knowledge
of the ϵi values.

The implemented algorithm consistently executes three steps: (i) Compute the target θ′ through
gradient descent, (ii) Implement perturbations to the model parameters and assess the perturbed pa-
rameters by computing their Euclidean distance to θ′, and (iii) Utilize the assessment results and encode
the gradient with the fitness measures.

Partitioning. In the context of PBGE, the fitness function indicates the model distance, not the
model performance on client data. This feature enables a unique partition-based approach for handling
a large number of model parameters. Here, the parameters, flattened into a vector θ, are split into
K partitions: θ[1], θ[2], ..., θ[K]. Each partition is then effectively encoded individually using PBGE,
which is advantageous when working with large models, as storing a large population of those may be
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Figure 1.5: Partition-based Model Parameter Compression. Illustration of dividing model parameters θ into K

partitions and compressing them individually using PBGE.

burdensome for clients with limited memory. Partitioning allows us to compute K fitness values per
each perturbation, providing K times more reference points to encode the gradient information given a
population size. Hence, even with a small population size (requiring less memory), we achieve robust
performance as validated by the empirical results provided in Supplementary Materials. Essentially,
partitioning provides a tradeoff of memory with communication as more fitness values now need to be
communicated per each perturbation. This partitioning process is visualized in Fig. 1.5. Notably, this
partitioning technique can be used with any model architecture, regardless of its specific design, providing
a practical and efficient means of compressing large models.

1.4 EvoFed

EvoFed operates on the principle that the evolutionary update step depends only on the fitness
values given the perturbation samples. In the FL context, we can leverage this characteristic to devise
an accurate yet communication-efficient strategy for model updates. This section provides a detailed
exposition of our methodology, breaking it down into stages for clarity. This iterative process, as outlined
in Algorithm 1, aims to gradually converge the model parameters at all nodes to an optimal solution
while minimizing data transmission during each update. An overall view of our proposed methodology
is depicted in Fig. 1.3.

1.4.1 Initial Setup

The initialization of the server and clients in EvoFed begins with the same baseline model, denoted
by θ0. A key assumption is that the server and all clients share the same seed (e.g., via broadcast-
ing) for identical random population generation. This approach ensures consistent baseline models and
populations across all nodes.

In this step, a population of candidate solutions (in this case, models) is generated by adding random
perturbations to the current best solution (the baseline model). The generation of an i-th member of
the model population can be formulated as follows:

θit = θt +N (0, σI) (1.6)

Here, N (0, σI) represents the perturbations sampled from a multivariate normal distribution with zero
mean and a shared covariance matrix σI. We also denote the population at each node at any given time

7



𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡,𝑗𝑗
′

𝑓𝑓𝑡𝑡,𝑗𝑗
1 = −𝑑𝑑(𝜃𝜃𝑡𝑡1,𝜃𝜃𝑡𝑡,𝑗𝑗

′ )

Upload 𝐟𝐟𝑡𝑡,𝑗𝑗

Download 𝐹𝐹𝑡𝑡𝜃𝜃𝑡𝑡5

𝜃𝜃𝑡𝑡3

𝜃𝜃𝑡𝑡6

𝜃𝜃𝑡𝑡1

𝜃𝜃𝑡𝑡2
𝜃𝜃𝑡𝑡9

𝜃𝜃𝑡𝑡8

𝜃𝜃𝑡𝑡7

𝜃𝜃𝑡𝑡4

Contour of local loss Lj(𝜃𝜃𝑡𝑡)

Model Update
𝜃𝜃𝑡𝑡+1

𝜃𝜃𝑡𝑡5

𝜃𝜃𝑡𝑡3

𝜃𝜃𝑡𝑡6

𝜃𝜃𝑡𝑡1

𝜃𝜃𝑡𝑡2
𝜃𝜃𝑡𝑡9

𝜃𝜃𝑡𝑡8

𝜃𝜃𝑡𝑡7

𝜃𝜃𝑡𝑡4

Contour of aggregated fitness 𝐹𝐹𝑡𝑡

𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 + 𝛼𝛼
9⋅𝜎𝜎

Σ𝑖𝑖=19 𝐹𝐹𝑡𝑡𝑖𝑖 ⋅ 𝜎𝜎𝑡𝑡𝑖𝑖

Server

𝐟𝐟𝑡𝑡,𝑗𝑗 𝑗𝑗=1
𝑀𝑀 → 𝐹𝐹𝑡𝑡

Aggregate

Figure 1.6: Local Updates and Fitness Evaluation (left) and Server/Client-side Update (right). Left: Client
performs BP on local data θt to obtain θ′

t,j , evaluates fitness f i
t,j by distance measure (e.g. L2) with θi

t, and
uploads ft,j to the server. Right: After obtaining the aggregated fitness Ft, all nodes update the baseline model
θt according to Eq. 1.9.

t as Pt = {θ1
t , θ

2
t , ..., θ

N
t }, where θit represents the i-th model in the population generated by adding the

i-th perturbation to the baseline model parameters, and N is the size of the population.

1.4.2 Local Updates and Fitness Evaluation

Each client node begins by executing BP on its local dataset, using the baseline model, θt, resulting
in an updated model, θ′

t. Following this, the fitness of each member θit in the local population, Pt, is
evaluated. This evaluation is done by measuring the similarity between θ′

t and θit. The L2 norm or
Euclidean distance serves as the measure of this similarity. The fitness of θit is represented as f(θit):

f(θit) = −||θ′
t − θit||22 (1.7)

The process of local update and fitness evaluation is illustrated in Fig. 1.6. The fitness values are the only
information that needs to be communicated among nodes. The fitness vectors are significantly smaller in
size compared to the model parameter vectors, which helps reduce the communication overhead. Hence,
each client sends a fitness vector, ft = {f(θ1

t ), f(θ2
t ), ..., f(θNt )} corresponding to all population members,

to the server.

1.4.3 Server-side Aggregation and Update

The server’s responsibility is to aggregate the fitness values reported by all client nodes, forming a
global fitness vector Ft comprising N elements, with Fit representing the fitness value of the ith member
of the population. Each client’s contribution to Ft is weighted by their respective batch size bj , giving
a larger influence to clients with potentially more accurate local updates.

The global fitness vector Ft is computed as follows:

Ft = 1∑M
j=1 bj

M∑
j=1

bjft,j (1.8)

where M is the total number of clients and ft,j is the fitness value vector from client j at time t. After
the aggregation, the server broadcasts Ft so that each client updates the baseline model θt.
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Algorithm 1 EvoFed: Federated Learning with Evolutionary Strategies
1: Input: Learning rates η, α, population size N , noise std σ, seed s

2: Initialize: server and M clients with seed s and identical parameters θ0 and θ0,j respectively
3: for each communication round t = 0, 1, ..., T − 1 in parallel do
4: for each client j in parallel do
5: θ′

t,j = θt,j − η∇θL(θ′
t,j) //Backpropagation Update

6: Sample ϵi
t ∼ N (0, σI) //Sample perturbations

7: θi
t,j = θt,j + ϵi

t for i = 1, ..., N //Initialize population
8: f i

t,j = −∥θi
t,j − θ′

t,j∥
2
2 for i = 1, ..., N // Compute fitness vector using L2 calculation

9: end for
10: Fi

t = 1∑M

j
bj

∑M

j
bjf i

t,j for i = 1, ..., N // Server averages fitness vectors

11: θt+1 = θt + α
Nσ

∑N

i=1 Fi
t · ϵi

t // Server updates model using the aggregated fitness
12: Broadcast {F1

t , F2
t , . . . , FN

t }
13: for each client j in parallel do
14: θt+1,j = θt,j + α

Nσ

∑N

i=1 Fi
t · ϵi

t // Client updates model using the aggregated fitness
15: end for
16: end for

1.4.4 Broadcasting Fitness

Once the aggregation is complete, the server broadcasts Ft to all client nodes, maintaining syn-
chronicity across the network. This only involves the transmission of the fitness vector, again reducing
communication overhead. The aggregated fitness vector can be used by the local clients (as well as by
the server, if needed) to update the local models.

1.4.5 Client-side Update

When the global fitness vector Ft is received from the server, the clients can update their local
model following Eq. 1.5. This strategy involves the addition of a weighted sum of noise vectors to the
current model parameters, where the weights are aggregated fitness values:

θt+1 = θt + α

Nσ

N∑
i=1

Fit · ϵit (1.9)

where ϵit is the i-th noise vector from the population at time t.
Notably, the right side of Eq. 1.9 can be shown equivalent to the average of all locally updated

models akin to FedAvg, i.e., it is straightforward to show that

θt+1 = 1∑M
j bj

M∑
j=1

bjθt+1,j (1.10)

where θt+1,j is the updated model of client j at time t+ 1 defined as

θt+1,j = θt + α

Nσ

N∑
i=1

f it,j · ϵit. (1.11)

1.4.6 Convergence Analysis

Theorem 1.4.1. Suppose that Lj(θ) is the β-smooth function, i.e., ∥∇Lj(u)−∇Lj(v)∥ ≤ β∥u− v∥ for
any u, v, and also suppose that the variance of the stochastic gradient of Dj is bounded, i.e., E∥∇Lj(θ)−
∇̃Lj(θ)∥2 ≤ B2 for all j. When perturbation ϵi is sampled, a conditioned mirrored sampling is applied
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Figure 1.7: Privacy enhancement through Fully Homomorphic Encryption and Trusted Execution Environ-
ments.

such that 1
N

∑N
i=1 ϵ

i = 0, 1
N

∑N
i=1
(
ϵi
)2 ≤ G2, 1

N

∑N
i=1
(
ϵi
)3 = 0. Given a decreasing learning rate

ηt <
1

4αβ , EvoFed converges in the sense of

1
HT

T−1∑
t=0

ηtE
[
∥∇L(θt)∥2

]
≤ E [L(θ0)]− L∗

αG2HT
+ 4αβB2

(
1
HT

T−1∑
t=0

η2
t

)

where HT =
∑T−1
t=0 ηt, and L∗ represents the minimum value of L(θ).

Given a decreasing learning rate (e.g., ηt = η0
1+t ), it can be seen that HT =

∑T−1
t=0 ηt → ∞ as T

increases, while
∑T−1
t=0 η2

t <∞. Consequently, the upper bound stated in Theorem 1.4.1 approaches 0 as
T grows, ensuring convergence towards a stationary point. The detailed discussions and the proof can
be found in Supplementary Materials.

1.4.7 EvoFed and Privacy Enhancements

Unlike other FL methods, EvoFed operates on fitness measures. Encryption on smaller fitness vectors
requires a lower overhead compared to encryption on large model parameter vectors. Fig. 1.7 shows Fully
Homomorphic Encryption (FHE) [48–50] that allows aggregation of encrypted data on the server while
keeping individual client data confidential. For the decryption of the aggregated fitness vector, EvoFed
can leverage third-party Trusted Execution Environments (TEEs), such as Intel SGX [51], providing a
secure space for sensitive computations.

1.4.8 Partial Client Participation

When FL has to operate with a large client pool, a typical practice is to select only a subset of
clients in each global round. In EvoFed, this means that the newly joined clients in a given round can
either download the latest model or else the last k fitness vectors from the server, where k is the time gap
from the last participation. In the latter case, the model updates from Equation (1.9) can be modified
to accommodate k-step updates:

θt = θt−k + α

Nσ

k∑
l=1

N∑
i=1

Fit−l · ϵit−l. (1.12)

Note that even in the former case where the latest model is downloaded by the newly joined clients, the
level of security is not compromised as far as the client-to-server messages are concerned.

1.5 Experiments

Our algorithm’s effectiveness is assessed on three image classification datasets: FMNIST [52], MNIST
[53], and CIFAR-10 [54]. Both MNIST and FMNIST contain 60,000 training samples and 10,000 test
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samples, whereas CIFAR-10 is composed of 50,000 training samples and 10,000 test samples. We employ
a CNN model having 11k parameters for the MNIST and FMNIST datasets and a more substantial
model with 2.3M parameters for CIFAR-10. A grid search has been conducted to identify the optimal
performance hyperparameters for each baseline, as outlined in the results section. We take into account
both global accuracy and communication costs to ascertain hyperparameters that maximize accuracy
while minimizing communication overhead.

Data Distribution. We distribute the training set of each dataset among clients for model training,
and the performance of the final global model is evaluated using the original test set. Our experimental
setup contains M = 5 clients with non-IID data distribution (assigning two classes to each client).

Implementation Details. Our EvoFed framework is built using JAX [55], which facilitates
extensive parallelization and, in particular, consistent random number generation across a large number
of nodes. We have implemented our framework on the Evosax [56] library, a convenient tool for the ES
algorithm. EvoFed is configured with a population size of 128 and a mini-batch size of 256 for MNIST
/ FMNIST and 64 for CIFAR-10. We perform ten local epochs (performing ten BP steps before fitness
calculation) and train over 1,000 global rounds.

Baselines. We compare the performance of the proposed EvoFed with BP, FedAvg, ES, FedAvg
with quantization (Fed-quant), and FedAvg with Sparsification (Fed-sparse). In each scenario, we push
for maximum compression, stopping right before the model starts to show performance degradation
relative to FedAvg with no compression. BP provides the upper-performance baseline, while ES serves
as a reference emphasizing the significance of PBGE.

1.6 Results and Discussions

In this section, we discuss the experimental results in detail and provide further insights into the
performance of EvoFed. The accuracy of EvoFed, compared with multiple baseline methods and different
datasets, is shown in Fig. 1.8 (a), (b), and (c). Efficiently encoding and exchanging gradient information,
EvoFed enhances the effectiveness of the ES algorithm across all tasks, delivering results comparable
to FedAvg. Also, EvoFed achieves superior accuracy at an equivalent compression rate compared to
sparsification. This suggests that utilizing a shared population of samples can reduce the information
necessary for gradient compression, thereby enhancing the efficiency of the process. Fig. 1.8 (d), (e), and
(f) shows the performance of each method as a function of communication load for all three datasets. It
can be seen that EvoFed tends to utilize significantly less communication resources as compared to other
high-accuracy techniques.

Table 1.1 summarizes the performance of different schemes on MNIST, FMNIST, and CIFAR-10
datasets, focusing on communication cost and accuracy. EvoFed achieves significantly lower communi-
cation costs compared to FedAvg while maintaining competitive accuracy levels. In the MNIST dataset,
EvoFed achieves an accuracy of 97.62% with a mere 9.2 MB of communication load, while FedAvg
achieves 98.09% accuracy at a considerably high communication cost of 73.7 MB. The effective compres-
sion achieved is an impressive 98.8% which indicates that the gradient vector is condensed into just 1.2%
of the fitness vector that is communicated between clients and the server. Similarly, for the FMNIST
dataset, EvoFed achieves an accuracy of 84.72% with only 7.78 MB of communication, whereas FedAvg’s
accuracy is 85.53% with a communication cost of 40.99 MB. The efficiency of EvoFed becomes even
more apparent in the CIFAR-10 dataset where the model compression is over 99.7%. EvoFed achieves an
accuracy of 54.12% with a low communication cost of only 0.023 GB, surpassing FedAvg, which performs
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Figure 1.8: Performance comparison of EvoFed and baseline methods on MNIST, FMNIST, and CIFAR-10
datasets. The top row displays the accuracy achieved by each method on the respective datasets, while the
bottom row illustrates the communication cost associated with each method.

50.22% at a communication cost of 2.134 GB. The simpler ES method actually gives better performance
as well as higher communication efficiency than EvoFed for MNIST but its accuracy for other data sets
is highly limited.

Additional Experiments. Figure 1.9 illustrates the performance of MAPA extension (MAPAX)
for varying numbers of k partitions. As shown model’s performance is significantly influenced by the
reconstruction matrix, which has the same amount of communication; the factorization with a larger
reconstruction matrix performs better and leads to less communication per accuracy. We observe a per-
formance improvement as we increase the population size, although at the cost of increased computation
and memory usage. Nonetheless, this improvement is not linear and plateaus once sufficient samples are
generated to explore the parameter space. For instance, in the case of the FMNIST dataset and a model
with 11K parameters, any performance enhancement beyond a generated sample size of 128 is marginal.

Figure 1.9(b) showcases EvoFed’s performance trend as the number of clients increases. A minor
performance decline is observable for some larger values of M relative to M=5. This decline could
potentially be attributed to the limited data available per client and the increased variance associated
with local training. Nonetheless, we believe that carefully tuning the hyperparameters based on data
distribution could assist in achieving more robust performance.

Supplementary Materials provide further details regarding hyperparameters, model architectures,
and experiments. We also include a detailed ablation study with different evolutionary strategies, the
population size, and the number of partitions, as well as detailed communication and computational
complexity analyses.
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Table 1.1: Communication cost (at target accuracy) and maximum accuracy for different methods across
datasets.

Dataset: MNIST Comm. @ 90% Acc. (MB) Comm. @ Max Acc. (MB) Max Accuracy

ES 0.10 4.60 97.62%
FedAvg 4.20 73.70 98.09%
Fed-quant 1.70 41.80 98.15%
Fed-sparse – 1.00 67.85%
EvoFed (ours) 0.80 9.20 98.30%

Dataset: FMNIST Comm. @ 70% Acc. (MB) Comm. @ Max Acc. (MB) Max Accuracy

ES 0.48 4.85 76.86%
FedAvg 0.87 40.99 85.53%
Fed-quant 0.94 37.98 83.23%
Fed-sparse 2.78 17.13 73.17%
EvoFed (ours) 0.75 7.78 84.72%

Dataset: CIFAR-10 Comm. @ 45% Acc. (GB) Comm. @ Max Acc. (GB) Max Accuracy

ES – 0.021 37.47%
FedAvg 0.266 2.134 50.22%
Fed-quant 0.086 0.800 49.78%
Fed-sparse 0.129 0.671 47.36%
EvoFed (ours) 0.004 0.023 54.12%
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Figure 1.9: Effect of population size (left) and number of clients (right) on EvoFed

1.7 Conclusion

EvoFed, the novel paradigm presented herein, unites FL and ES to offer an efficient decentralized
machine learning strategy. By exchanging compact fitness values instead of extensive model parameters,
EvoFed significantly curtails communication costs. Its performance parallels FedAvg while demonstrating
an impressive equivalent model compression of over 98.8% on FMNIST and 99.7% on CIFAR-10 in
representative experimental settings. Consequently, EvoFed represents a substantial stride forward in
FL, successfully tackling the critical issue of high communication overhead.
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Chapter 2. Model-Agnostic Projection Optimization

2.1 Introduction

Federated Learning (FL) is a distributed framework that enables model training across many clients
without centralizing data. In each communication round, clients download a global model, update it
using local data, and send modifications back to the server, which aggregates them (e.g., via FedAvg [2]).
While this iterative process enables collaborative learning, frequent transmission of model updates incurs
significant communication overhead, limiting FL application, particularly with large models or resource-
constrained clients.

Communication-Efficient Federated Learning (CEFL) literature [57] proposes a vast range of strate-
gies to reduce communication load. These methods are typically categorized into sketched updates, which
compress the total model update after optimization (e.g., subsampling, quantization, random projection),
and structured updates, which restrict the trainable parameters to a lower-dimensional subspace before
optimization (e.g., random masks, weight-sharing, and low-rank decomposition) [1].

Low-rank decomposition is a widely used approximation technique that expresses model gradients
or parameters as the product of low-rank matrices [58]. Parameter decomposition is particularly effective
for Parameter-Efficient Fine-Tuning (PEFT), where auxiliary low-rank adaptation (LoRA) modules are
added to each layer to reduce computation and storage overhead of full-model fine-tuning [59]. Although
LoRA alleviates communication burdens in FL, constraining model parameters to a low-rank subspace
can degrade performance. In contrast, gradient decomposition preserves full-rank model representations
during inference and restricts only the gradients to a low-rank form during backpropagation [60–64]. A
visual comparison is shown in Figure 2.1.

Challenges. While CEFL methods for gradient decomposition [65–69], parameter decomposi-
tion [70–74], or LoRA variants [75–79] offer notable benefits, they face several key challenges: 1) The layer-
wise decomposition that adheres to the structural constraints (e.g., fully connected or convolutional),
requiring architecture-dependent implementation for each layer decomposition. 2) Given a decomposi-
tion ∆Wi∈IRd1×d2≈BiAi, where Ai∈IRr×d2 and Bi∈IRd1×r, the number of transmitted parameters is
C = |Ai| + |Bi| = r(d1 + d2) for r ∈ IN , restricting the communication rate to multiples of (d1 + d2),
imposing a rigid communication granularity as C ∈ (d1 + d2)IN . 3) Given M number of clients and
(Aji , B

j
i ) denoting the low-rank decomposition of layer i from client j, averaging these low-rank matrices

is not equivalent to full-rank aggregation as:
1
M

(B1
iA

1
i +B2

iA
2
i + · · ·+BMi A

M
i ) ̸= 1

M
(B1

i +B2
i + · · ·+BMi ) 1

M
(A1

i +A2
i + · · ·+AMi ).

4) Although fixing all {Aji}Mj=1 matrices to the same values can mitigate the aggregation problem and
improve the communication granularity to C ∈ d1IN , as shown in FA-LoRA [75] and EvoFed [80], it
restricts the model’s ability to explore richer subspaces, often leading to suboptimal solutions [79]. Thus,
we aim to answer the following key question:

How can we develop an architecture-independent model-wide decomposition that offers flexibility on
communication rate, address the low-rank averaging problem, and suboptimality of freezing A?

Key Ideas. We propose a novel Model-Agnostic Projection Optimization (MAPO) that stream-
lines gradient projection and addresses its challenges while being computationally lighter than layer-wise
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Figure 2.1: Comparison of various decomposition methods, from left: no decomposition, low-rank parameter
decomposition, frozen model with low-rank adapter (LoRA), low-rank gradient decomposition, and MAPO.

methods. Our key ideas are described as follows:
(i) Firstly, MAPO reimagines low-rank gradient projection by treating the entire model gradient as

a single matrix rather than layer-by-layer decomposition. It eliminates architecture-specific constraints
by merging the flattened gradients of all layers, constructing the universal gradient vector ∆W ∈ IRd.
where d is the total number of parameters, making MAPO applicable to any model architecture.

(ii) Secondly, given any communication budget k, MAPO pads ∆W with zeros so the length becomes
divisible by k. Afterwards, padded ∆W will be reshaped to ∆W ′ ∈ IRk×⌈d/k⌉ which further can be
decomposed it into a A ∈ IR1×⌈d/k⌉ and B ∈ IRk×1 matrices, as ∆W ′ = BA.

(iii) Lastly, instead of relying on a fixed A, MAPO explores new subspaces in each federated round
through reinitialization of A, mitigating the risk of suboptimal convergence. Synchronization of A is
achieved efficiently via a shared seed, removing the need to transmit A.

Summary of Contributions. By integrating (i) model-level decomposition, (ii) flexible commu-
nication rate, and (iii) subspace exploration, MAPO offers a flexible trade-off between communication
cost and performance while remaining more efficient than low-rank decomposition methods. Figure 2.3
illustrates the distinction between MAPO and other paradigms. Our main contributions are:

• We introduce model-agnostic optimization of gradient projections that enhances communication
and computation efficiency, boosts performance through exploration, and offers more flexibility in
balancing communication and error rate.

• We provide theoretical analysis for MAPO convergence behavior, and establish its computation
efficiency compared to layer-wise factorization with the same communication and error rates.

• We conduct extensive experiments across diverse datasets, model architectures, and baselines,
demonstrating that MAPO surpasses existing methods in full training and fine-tuning scenarios.

2.2 Background and Related Works

In this section, we review key CEFL approaches in relation to MAPO. We begin with sketched update
techniques that project model updates into subspaces, outlining their limitations. Then, we examine
structured update methods, particularly projection optimization, highlighting the unique opportunities
and challenges introduced by operating within a fixed subspace.
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Figure 2.2: MNIST performance for varying trainable parameters.

2.2.1 Sketched update vs. Structured update

Sketched update includes techniques such as sparsification [1], quantization [4,5,81–85], gradient
subspace projection [86–88], and random subspace projection [80, 89]. They aim to compress the infor-
mation in the update vector ∆W ∈ IRd defined as the difference between the locally optimized and the
global model ∆W = W ∗ −Wg, where W ∗ can be the result of multiple local epochs.

The subspace projection process [89–92] defines a random matrix A ∈ IRp×d, and finds the projection
vector B ∈ IRp, which minimizes the reconstruction error ∥∆W −BA∥2, where d denotes the total
number of model parameters and p≪ d is compressed length:

B∗ = arg min
B∈IRp

∥∆W −BA∥2 ; B∗ ≈ ∆WA⊤(AA⊤)−1.

As the matrix A is considerably large (p×d), various methods propose novel designs for A to adapt it for
large-scale models. Notably, defining A as a subset of seen gradient vectors results in a significantly lower
rank of A suffices for an effective projection [86–88]. More recently, EvoFed [80] utilizes evolutionary
strategies to evolve A, improving its representation and efficiency.

Sketching Limitations. Although sketched methods benefit from a full-rank training, their short-
coming is blindness to the loss surface L(W ;D) and alternative solutions besides ∆W that can be
reconstructed from the projection subspace. They typically perform well, given a sufficient communica-
tion budget, but as the compression rate increases, the reconstruction of the projection vector ends up
far off from ∆W . In contrast, subspace optimization directly finds the steepest direction within the sub-
space, leading to a more effective reduction in loss. Figure 2.2 presents an example of centralized MNIST
training, illustrating the performance degradation of sketched update techniques such as EvoFed [80]
and Top-k Sparsification [1] compared to MAPO. As sparsity increases, MAPO continues to converge,
even having 2 or 4 trainable parameters out of 11,274.

Structured update techniques reduce the number of trainable parameters and communication cost
by constraining the weights or gradients to a low-rank subspace by structural modification such as prun-
ing [93–96], weight–sharing [97–99], low-rank gradient [65–69], and parameter decomposition [70–74],
including LoRA and its variants [59, 75–78]. Although parameter decomposition techniques reduce the
model size and representation, resulting in subpar performance for general training, as shown in Fig-
ure 2.2 for Factorized-FL [72]. Therefore, CEFL generally adopts a gradient decomposition direction.
In particular, gradient decomposition methods with freezing A, also known as projection optimization,
remain popular owing to strong theoretical foundations, reduced communication, and hardware friend-
liness [60–64].

Prior works on gradient decomposition relied on each layer’s shape and architecture, producing a
unique Ai and Bi matrices for each layer, limiting the feasibility of sharing a projection matrix A across
layers. MAPO overcomes this limitation by evenly partitioning the whole model gradient vector ∆W ∈IRd
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Figure 2.3: Step-by-Step illustration of methodology based on propositions, demonstrating how each step will
contribute to designing MAPO factorization and differing from LoRA architecture.

into k segments {∆W ′
i}ki=1 ∈ IRk×⌈d/k⌉, allowing the use of a shared random reconstruction matrix

A∈IR1×⌈d/k⌉ across all partitions, maintaining the benefits of model-wide projection while substantially
reducing memory costs.

2.2.2 Parameter-efficiency vs. Communication-efficiency

Despite their apparent similarities, parameter decomposition and gradient decomposition methods
differ fundamentally in assumptions and objectives. Parameter decomposition directly imposes a low-
rank structure on the model parameters, effectively replacing the original model with a compressed
version. Although this reduces the total number of parameters and computational overhead, it still
requires transmitting all parameters at each communication round, resulting in no relative reduction
in communication per parameter. In contrast, gradient decomposition methods maintain the original
model architecture and computational complexity but substantially reduce communication overhead by
transmitting compressed updates that are significantly smaller than the full model.

In this work, to ensure a fair assessment of communication efficiency, we evaluate MAPO against
gradient-based compression baselines under consistent model architectures. Additional experiments with
parameter decomposition and LoRA-based methods are provided in Sections B.2 and B.3 for complete-
ness. Key methodological distinctions among related works are summarized in Table 2.1.

Table 2.1: Summary of CEFL methods and objectives. The column “Comm. Flex” indicates support
for arbitrary bitrates, and “Agg. Eq.” denotes equivalence between low-rank and full-rank averaging.

Method Scope Target Full-rank
Inference

Agg.
Eq. PEFT

Fixed
Subspace

Arch-
Agnostic

Comm
Flex

Personalized
FL

Sparsification [1] Model Update ✓ ✓ ✗ ✗ ✓ ✓ ✗

Quantization [84] Model Update ✓ ✓ ✗ ✗ ✓ ✓ ✗

EvoFed [80] Model Update ✓ ✓ ✗ ✓ ✓ ✓ ✗

Factorized-FL [72] Layer Parameter ✗ ✗ ✗ ✗ ✗ ✗ ✓

LoRA [59] Layer Adapter ✗ ✗ ✓ ✗ ✗ ✗ ✗

FA-LoRA [75] Layer Adapter ✗ ✓ ✓ ✓ ✗ ✗ ✗

SA-LoRA [79] Layer Adapter ✗ ✗ ✓ ✗ ✗ ✗ ✓

FedLoRU [67] Layer Gradient ✓ ✓ ✗ ✓ ✗ ✗ ✗

MAPO (Ours) Model Gradient ✓ ✓ ✗ ✓ ✓ ✓ ✗
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Figure 2.4: Application of MAPO to communication-efficient FL.

2.3 Proposed Method

In this section, we introduce MAPO and its application in FL. We first present the MAPO fac-
torization technique and discuss its key properties regarding communication efficiency and error rate.
Subsequently, we detail how MAPO can be effectively integrated into the FL training process.

2.3.1 Model-Agnostic Projection Optimization (MAPO)

MAPO Description. MAPO performs a black-box, model-agnostic factorization of the global
model gradient ∆W ∈ IRd, avoiding architecture-specific constraints and enabling continuous subspace
exploration during optimization. Specifically, MAPO partitions ∆W into k segments {∆W ′

i}ki=1 ∈
IRk×⌈d/k⌉ and employs a shared random reconstruction matrix A ∈ IR1×⌈d/k⌉ across all partitions. This
design preserves model-wide projection benefits while substantially reducing memory overhead. As illus-
trated in Figure 2.1, MAPO reshapes the universal gradient ∆W ∈ IRd×1 into ∆W ′ ∈ IRk×⌈d/k⌉, which
is then decomposed into a reconstruction vector A and a projection vector B ∈ IRk×1. Figure 2.3 shows
a step-by-step visualization analogous to Theorems 2.3.4 to 2.3.6.

MAPO Properties. MAPO aims to construct an expressive subspace, enabling a small B to
encode sufficient information for updating the model efficiently. First, we formally define the concepts
of communication overhead rate and reconstruction error rate in the context of matrix factorization in
Theorems 2.3.2 and 2.3.3. Using these definitions, Theorem 2.3.4 establishes that reshaping a single layer
preserves both the factorization error and communication rates. Extending this, Theorem 2.3.5 demon-
strates that vectorizing multiple layers into a single matrix similarly maintains these properties. Finally,
this leads to the proof of Theorem 2.3.6, which introduces a computationally and communication-efficient,
model-agnostic factorization method as an alternative to traditional layer-wise gradient projection tech-
niques. Section B.6 presents the formal proofs.

Assumption 2.3.1 (Gaussian Matrices are Full Rank). Let A ∈ IRm×n be a random matrix with
entries drawn independently from a Gaussian distribution N (0, σ2). Then, A is almost surely of full
rank, i.e., rank(A) = min(m,n), as the probability of A being rank deficient is zero. This result follows
from standard properties of random matrices [100,101].

Definition 2.3.2 (Communication Overhead Rate). Let ∆Wi ∈ IRd1×d2 be the update matrix of
a model. Suppose the factorization of ∆Wi as ∆Wi = BiAi, where Ai ∈ IRq×d2 is a fixed random
matrix and Bi ∈ IRd1×q is a trainable matrix with q ≤ min(d1, d2) being the factorization rank. The
communication overhead rate COrate is defined as the ratio of the size of Bi to the size of ∆W :

COrate = size(Bi)
size(∆Wi)

= q

d2
.
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Definition 2.3.3 (Reconstruction Error Rate). Using the same factorization as Theorem 2.3.2, the
reconstruction error rate is the expected ratio of the reconstruction error to the original model update.
Given full-rank random reconstruction (Theorem 2.3.1), it is expressed as:

EAi
[
∥∆Wi −BiAi∥2

2
]

∥∆Wi∥2
2

= 1− q

d2
.

Proposition 2.3.4 (Single-Vector Factorization). Let ∆Wi, Ai, and Bi be factorizations of a single
layer of the network as in Theorem 2.3.2. By reshaping ∆Wi into ∆W ′

i ∈ IR1×d1d2 the factorization of
∆W ′

i = B′
iA

′
i where A′

i ∈ IRp×d1d2 and B′
i ∈ IR1×p can achieve the same reconstruction error and

communication overhead to the conventional factorization of ∆Wi when p = qd1.

Proposition 2.3.5 (Multi-Layer Factorization). Let ∆Wi, Ai, and Bi be single-vector factoriza-
tion of i-th layer of the N -layered network as in Theorem 2.3.4. By concatenating the reshaped weights
∆Wi into ∆W ′ ∈ IR1×d, where d =

∑N
i=1 d

i
1d
i
2. The factorization of ∆W ′ = B′A′ where A′ ∈ IRp×d

and B′ ∈ IR1×p can achieve the same reconstruction error and communication overhead to the
single-vector factorization applied to each ∆Wi when p = Nqd1.

Proposition 2.3.6 (MAPO Factorization). Let ∆W , A, B, and rank p be a multi-layer factorization
of a network as defined in Theorem 2.3.5. By reshaping ∆W ∈ IR1×d into ∆W ′ ∈ IRk×⌈d/k⌉, and
the factorization of ∆W ′ = B′A′ where A′ ∈ IR1×⌈d/k⌉ and B′ ∈ IRk×1, we can achieve the same
reconstruction error and communication overhead to the multi-layer factorization of ∆W when
k = p, while reducing the memory by a factor of k2.

2.3.2 Application to Communication-Efficient FL

This subsection explains how our method, outlined in Section 2.3.1, is utilized in FL. The procedure
pseudo-code is provided in Algorithm 2, and visualized in Figure 2.4.

Matrix Construction and Broadcasting. To ensure consistency across the network, the server
and all clients start from an identical condition at each round. We guarantee identical model parameters
Wt and reconstruction matrix At by broadcasting a random seed rt and the aggregated projection vector
Bt at the beginning of round t. The initial aggregated projection vector is set to B0 = 0.

In the first round (t = 0), all clients and the server initialize the model W 0 using the same
seed. The reconstruction matrix A0∈IR1×⌈d/k⌉ is drawn from Gaussian A0 ∼ N (0, I), and the client j’s
projection vector B0,j ∈IRk×1 is set to 0 for all 1 ≤ j ≤M , where M is the total number of clients.

In subsequent rounds (t ≥ 1), clients update their local model W t using the previous round’s
matrix At−1, the model parameters W t−1, and the broadcasted projection vector Bt as follows:

W t = W t−1 + vec(BtAt−1)[0:d], (2.1)

where vec(·) and (·)[0:d] denotes vectorization and truncating to the first d elements. Clients then
regenerate At∼N (0, I) using the seed rt and reset Bt,j←0, ensuring At and W t synchronization.
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Algorithm 2 Federated Learning with MAPO
1: Input: Initial seed r0, global model W 0, reconstruction matrix A0, projection vector B0

2: Initialize W 0 ∈ Rd, A0 ∈ R1×⌈d/k⌉, B0 ← 0 ∈ Rk×1

3: for t = 1 to T − 1 do
4: Server: Broadcast Bt−1 and seed rt−1 to all clients
5: for all clients j = 1 to M (in parallel) do
6: Receive Bt−1 and rt−1

7: Update local model: W t ←W t−1 + vec(BtAt−1)[0 : d]
8: Re-generate At = N (0, σ2Id) | rt−1

9: Initialize Bt,j ← 0 ∈ Rk×1

10: for e = 1 to E do
11: Compute gradient: ∇Bt,j ← ∇Bt,jLj(W t + vec(Bt,jAt−1)[0 : d],Dj)
12: Update projection vector: B̂t,j ← Bt,j − η∇Bt,j

13: Bt,j ← B̂t,j

14: end for
15: Send B̂t,j to the server
16: end for
17: Server: Re-generate At = N (0, σ2Id) | rt−1

18: Aggregate: Bt ← 1
S

∑M
j=1 bjB̂

t,j , where S =
∑
j bj

19: Update global model: W t+1 ←W t + vec(BtAt−1)[0 : d]
20: Generate new seed rt (e.g., rt = hash(rt−1))
21: end for
22: Return WT

Local Projection Optimization. This step optimizes the projection B̂t,j to minimizes the client
loss L(W t + vec(Bt,jAt−1)[0:d],Dj), where Dj denotes client j’s local dataset, and model weights are
derived as W t+vec(Bt,jAt)[0:d] given the random matrix At.

At each communication round t ≥ 1, after initializing At and Bt,j , clients perform local training to
optimize Bt,j using their local data Dj . The gradient of the projection vector is computed as:

∇Bt,j = ∇Bt,jLj(W t + vec(Bt,jAt−1)[0:d]) for Lj(W ) = 1
|Dj |

∑
x∈Dj

ℓ(W,x). (2.2)

where ℓ(W,x) is the loss function (e.g., cross-entropy loss) given model W and data point x. Therefore,
given the learning rate η, only the projection B̂t,j is updated using gradient descent as:

B̂t,j ← Bt,j − η∇Bt,j , (2.3)

After optimization, clients send their optimized projection vector B̂t,j to the server. The low dimension-
ality of B̂t,j compared to W t results in communication efficiency.

Server-Side Aggregation and Global Model Update. Upon receiving the projection vectors
B̂t,j and their corresponding weights bj = |Dj | (e.g., batch sizes or number of local samples) from the
clients, the server aggregates them to form the global projection vector:

B
t = 1

S

M∑
j=1

bjB̂t,j , for S =
M∑
j=1

bj (2.4)
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Table 2.2: Summary of datasets and models used in our experiments.
Dataset Client Distribution Train/Test # Classes Model # Parameters

MNIST [53] Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
FMNIST [52] Non-IID (2 classes) 60K / 10K 10 CNN - 2 Layers 11,274
CIFAR-10 [102] Non-IID (2 classes) 50K / 10K 10 CNN - 4 Layers 1,146,634
CIFAR-100 [102] Non-IID (10 classes) 50K / 10K 100 WideResNet 16d4w 2,854,420
TinyImageNet [103] Non-IID (10 classes) 100K / 10K 200 WideResNet 16d4w 2,880,120
Shakespeare [104] Distributed by Roles 14K / 2K 65 LSTM 814,957
Sentiment140 [104] Distributed by Users 1.4M / 200K 2 Transformer 2,221,570

GLUE Tasks [105] Non-IID differ per task differ per task RoBERTa-Large 357,199,876

This weighted averaging captures the collective contribution of all clients, proportional to their data
sizes. The server then broadcasts the aggregated projection vector Bt to all clients. After receiving Bt,
the server and all clients update their local models using the reconstruction matrix At and the aggregated
projection vector Bt as:

W t+1 = W t + vec(BtAt−1)[0:d]. (2.5)

This update integrates the clients’ optimized directions into their local models and ensures synchroniza-
tion across the network. This process is repeated until the global model converges.

2.4 Convergence Analysis

We analyze the convergence behavior of FL with MAPO.

Assumption 2.4.1. For each j,Lj(v) is β-smooth, i.e.,
∥∥∇Lj(u)−∇Lj(v)

∥∥ ≤ β∥u−v∥ for any u, v.

Assumption 2.4.2. Variance of the stochastic gradient of Dj is bounded for each client j, i.e.,

E
[∥∥∥∇Lj(W )− ∇̃Lj(W )

∥∥∥2]
≤ σ2

l

.

Theorem 2.4.3. Let the learning rate satisfy ηt ≤ 1−4ϵ
4β(1+ϵ) . Then, the algorithm achieves the bound:

1
4HT

T−1∑
t=0

ηtE
[∥∥∇L(W t)

∥∥2
]
≤

E
[
L(W 0)

]
− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

1
HT

T−1∑
t=0

η2
t ,

where HT =
∑T−1
t=0 ηt, ϵ is JL Lemma distortion parameter, and L∗ is the minimum value of L(W ).

With a decreasing learning rate satisfying
∑∞
t=0 ηt →∞,

∑∞
t=0 η

2
t <∞ (ηt = η0

t+c for some constants
η0 > 0, c > 0), the term HT =

∑T−1
t=0 ηt grows unbounded, while the weighted sum

∑T−1
t=0 η2

t remains
finite. Therefore, the right-hand side of Theorem 2.4.3’s bound satisfies:

E[L(W 0)]− L∗

HT
→ 0, 1

HT

T−1∑
t=0

η2
t → 0 as T →∞.

Thus, confirming convergence to a stationary point, as the gradient norm average satisfies:

1
HT

T−1∑
t=0

ηtE
[
∥∇L(W t)∥2]→ 0,

As shown above, the convergence bound is influenced by the factor ϵ+β+βϵ. In particular, the bound
becomes tightest and achieves the highest communication efficiency when there is no reconstruction error,
i.e., when ϵ = 0. The complete proof of Theorem 2.4.3 is located in Section B.7.
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Figure 2.5: Performance comparison of all methods on MNIST, FMNIST, CIFAR-10, and Shakespeare
datasets. The top row shows the accuracy, while the bottom row illustrates the communication cost per accuracy.

Table 2.3: Summary of maximum accuracy (%) and communication cost (% relative to FedAvg). Accu-
racy values report mean (±std) over 3 runs, estimated from observed variance.

MNIST FMNIST CIFAR-10 CIFAR-100 Shakespeare Sent140 TinyImageNet

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100 98.9 (±0.1) 100 89.2 (±0.2) 100 69.0 (±0.2) 100 43.47 (±0.3) 100 41.86 (±0.3) 100 74.90 (±0.3) 100 36.48 (±0.4)

Sparse 15.3 92.1 (±0.4) 24.1 81.1 (±0.4) 2.7 37.15 (±0.5) 1.20 33.72 (±0.5) 1.73 34.86 (±0.4) 1.93 74.21 (±0.3) 1.32 25.34 (±0.5)

Quantize 31.3 97.6 (±0.2) 24.1 87.1 (±0.3) 15.2 67.40 (±0.3) 6.10 40.05 (±0.4) 10.11 35.45 (±0.4) 13.85 73.70 (±0.3) 8.75 34.47 (±0.4)

EvoFed 9.40 98.5 (±0.2) 7.60 84.7 (±0.3) 3.4 39.50 (±0.4) 20.4 37.62 (±0.4) 0.23 36.76 (±0.3) 0.40 70.50 (±0.3) 1.85 15.40 (±0.5)

FedLoRU 30.2 93.8 (±0.4) 17.9 74.1 (±0.5) 1.7 23.52 (±0.5) 1.20 19.10 (±0.5) 1.67 28.07 (±0.5) 1.30 66.61 (±0.4) 1.27 7.31 (±0.5)

MAPO 2.95 98.6 (±0.1) 3.10 88.0 (±0.2) 1.20 68.3 (±0.2) 0.91 40.16 (±0.3) 0.13 39.96 (±0.3) 0.19 74.50 (±0.2) 0.97 35.22 (±0.3)

2.5 Experimental Setup

We evaluate MAPO across diverse model architectures, tasks, and baselines. The benchmarks
span five image classification datasets—MNIST [53], FMNIST [52], CIFAR-10, CIFAR-100 [102], and
TinyImageNet [103]—as well as sequential tasks, including next-character prediction on Shakespeare
and sentiment analysis on Sentiment140, both drawn from the LEAF benchmark suite [104], tailored
for FL. Additionally, we evaluate MAPO as a fine-tuning method, alongside LoRA baselines on various
GLUE [105] tasks, highlighting the communication and computation efficiency in Section B.2. The
dataset specifications and corresponding model architectures are summarized in Table 2.2, highlighting
MAPO’s adaptability across varying data modalities, model scales, and application domains.

Non-IID Distribution. To simulate realistic FL conditions, we partition the training datasets in
a non-IID manner across 100 clients. For image classification and GLUE tasks, each client is assigned a
distinct subset of classes. For LEAF tasks, we follow the natural user-based partitioning, where individual
Shakespearean roles and Twitter users correspond to separate clients.

Model Architectures. We evaluate MAPO across diverse architectures of varying complexity,
including CNNs (2-layer for MNIST and FMNIST; 4-layer for CIFAR-10), WideResNet (width 4, depth
16) for CIFAR-100 and TinyImageNet, LSTM for next-character prediction, Transformer for sentiment
analysis, and RoBERTa for GLUE tasks. Detailed architecture specifications and hyperparameters are
in Section B.4.
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Baselines. We compare MAPO against multiple baselines, including standard compression meth-
ods with Top=k subsampling (Sparse) [1], and quantization (Quant) [84]. Additionally, we evaluate
MAPO against EvoFed [80], a state-of-the-art gradient compression, and FedLoRU [67], a representative
gradient projection approach. Subsampling and quantization serve as references to establish MAPO’s
performance compared to conventional compression techniques. EvoFed provides a strong comparison to
demonstrate the effectiveness of MAPO’s subspace optimization relative to methods applying compres-
sion post-optimization. FedLoRU allows us to highlight MAPO’s dynamic subspace exploration and its
benefits over static layer-wise gradient projections. Results comparing MAPO with additional parameter-
factorization (Factorized-FL [72]) and adapter-based fine-tuning baselines (LoRA [59], FA-LoRA [75],
and SA-LoRA [79]) are included in Sections B.2 and B.3.

Federated Learning Setting. In each training round, 10% of the clients are randomly selected
to participate. Selected clients train locally in parallel and transmit their updates to the central server,
which aggregates these updates and redistributes the resulting global model back to the clients. Model
performance is evaluated centrally using the test dataset at the server.

2.6 Results and Discussions

We now discuss our experimental results in detail and provide insights into MAPO’s performance.
Figure 2.5 (top row) shows the accuracy of MAPO compared to multiple baseline methods across vari-
ous datasets. MAPO consistently outperforms all other methods and achieves accuracy comparable to
FedAvg, despite transmitting only a fraction of the parameters. This improvement results from MAPO’s
dynamic subspace optimization, which promotes effective exploration and efficient use of the communi-
cation budget to minimize the loss function directly. Additionally, Figure 2.5 (bottom row) illustrates
the minimal communication cost required by each method to reach a given accuracy level, highlighting
MAPO’s significantly lower communication demands (logarithmic scale on the y-axis). Additional results
on CIFAR-100, TinyImageNet, and Sentiment140 are presented in Section B.1.

Table 2.3 summarizes experimental results by comparing the maximum accuracy of each baseline
and their communication cost relative to FedAvg. To ensure fair comparison, communication costs
are reported as the percentage required to reach the accuracy of the worst-performing baseline. MAPO
consistently achieves competitive accuracy with significantly lower communication overhead. Specifically,
on MNIST and FMNIST, MAPO achieves 99.6% and 98.6% of FedAvg’s accuracy, respectively, using only
3% of FedAvg’s communication cost. For CIFAR-10, CIFAR-100, and TinyImageNet, MAPO attains
98.9%, 92.4%, and 96.5% of FedAvg accuracy, respectively, while consuming approximately 1% of the
communication. Finally, in sequential tasks (Shakespeare and Sentiment140), MAPO retains up to 95.5%
and 99.5% of FedAvg’s accuracy, respectively, while dramatically reducing communication to less than
0.2%.

MAPO Hyperparameter. MAPO simplifies gradient projection by applying a single factorization
across all model parameters, thus replacing per-layer rank selection with a single hyperparameter, k,
directly controlling communication cost and model accuracy. Figure 2.6 illustrates the effect of varying
k on performance and communication efficiency for the FMNIST and Shakespeare datasets. While
a smaller k significantly reduces communication overhead, it slows the convergence, requiring more
training rounds. Conversely, increasing k improves convergence speed and accuracy but rapidly raises
communication costs, often with diminishing returns. Therefore, the optimal k achieves a target accuracy
with minimal total communication. Figure 2.6(b) and (c) show communication costs associated with
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Figure 2.6: Accuracy and communication cost per accuracy level for FMNIST and Shakespeare datasets.
Demonstrating the effect of a number of trainable parameters (k) on the communication efficiency of MAPO.

specific accuracy levels, guiding the selection of optimal k. We use the same guidelines for all baselines
to fairly tune hyperparameters.
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Figure 2.7: Comparison of having a fresh A vs. frozen A.

Fresh Reconstruction Matrix. A key factor in MAPO’s performance is using a dynamically
generated reconstruction matrix A rather than a fixed one. This approach promotes the exploration of
new subspaces throughout training. Figure 2.7 illustrates the benefits of using a fresh A on the FMNIST
and Shakespeare datasets. We evaluate MAPO across varying numbers of trainable parameters, ranging
from 20 to 213. For FMNIST, this corresponds to 0.009% to 72.27% of the total model parameters, while
for Shakespeare, it spans from 0.0001% to nearly 1%. In both cases, MAPO with a fresh A achieves
superior convergence with fewer parameters, effectively leveraging the search space. In contrast, when
A is frozen, performance follows a logarithmic correlation with the number of trainable parameters,
requiring an exponentially larger parameter count to match the results obtained with a fresh A.

Additional Results. Comparisons with LoRA-based methods and Factorized-FL are provided in
Sections B.2 and B.3. Section B.5 supplements our main experiments with evaluations under IID distri-
butions and without client sampling. Additionally, Section B.8 presents a detailed memory complexity
analysis, emphasizing MAPO’s computational efficiency and flexibility compared to layer-wise low-rank
factorization.

Limitations. MAPO’s improved communication efficiency comes with additional computational
overhead from gradient projection optimization. While significantly reduced compared to prior methods,
MAPO still requires ⌈d/r⌉ + r memory and computation (instead of dr + r; see Section B.8). MAPO
complements, but does not replace, PEFT methods like LoRA, as it reduces communication overhead
without decreasing the trainable parameters or storage requirements (see Section B.2).
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2.7 Conclusion

We introduced Model-Agnostic Projection Optimization (MAPO), a novel approach for CEFL. Unlike
layer-wise decomposition, MAPO factorizes the entire gradient using a projection vector and a random
reconstruction matrix, regenerated at each round. MAPO balances communication efficiency and ac-
curacy without imposing architecture-specific constraints or fixed-subspace limitations. Our theoretical
analysis establishes convergence guarantees, and empirical results demonstrate superior performance and
scalability across diverse datasets, confirming its practical value for FL.
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Chapter 3. Aggregation of Principals in Low-rank via SVD

3.1 Introduction
Recent advances in Pre-trained Foundation Models (PFMs) have demonstrated exceptional perfor-

mance across diverse downstream applications, benefiting from massive-scale computational resources
and large datasets [106–110]. However, full-rank fine-tuning (FFT) of FMs remains computationally
expensive and data-intensive for users with limited resources. To overcome this, Parameter-Efficient
Fine-Tuning (PEFT) approaches, notably Low-Rank Adaptation (LoRA) [59], have emerged as a prac-
tical solution, reducing both computational costs and storage requirements significantly [111]. While
LoRA considerably alleviates fine-tuning overhead, individuals with limited data struggle to adapt these
models effectively to their specific tasks [112].

Personalized Federated Learning (PFL) presents a viable solution, allowing clients to collabora-
tively fine-tune their models by leveraging distributed local datasets without compromising privacy [113].
Clients periodically upload model gradients, which the server aggregates and broadcasts back to them [2].
However, communication overhead from the frequent transmission of model gradients poses a major chal-
lenge for clients with limited resources.

Communication-Efficient Federated Learning (CEFL) [57] proposes a vast range of strategies
to reduce communication load, typically categorized into sketched updates, which compress the gradients
after optimizing the local model (e.g., sparsification, quantization [84], random projection [80]), and
structured updates, which reduce the number of trainable parameters to a lower-dimensional subspace
before optimization (e.g., random masks, weight-sharing, and low-rank factorization) [1]. On the other
hand, performing a few local epochs in each round [6] can reduce the communication frequency. However,
the aggregation of models after multiple local epochs results in a noticeable performance degradation
due to the accumulated client drift.

Client drift is the divergence in clients’ parameters trained by stochastic gradient descent (SGD)
due to data heterogeneity [114–116] and overparameterization of neural networks (NN) [117–120]. To
reduce client drift, early works such as FedProx [121] and SCAFFOLD [122] propose regulations on
client drift by modifying the optimization objective in the clients, while improving the stability are not
very effective, as they failed to address the root cause of client drift, as explained with Linear Mode
Connectivity (LMC) [123].

Linear Mode Connectivity (LMC) barriers refer to the obstacles encountered when linearly
interpolating (e.g., averaging) between two independently trained NN, typically resulting in suboptimal
performance due to significant differences in their parameter spaces. Prior literature indicates that both
the NN permutation symmetry [124] and client heterogeneity [115] lead SGD solutions to reside in distinct
loss basins, creating barriers to linear connectivity and complicating model alignment. Furthermore, even
when two aligned models lie within the same loss basin, linearly interpolating their weights can lead to
variance collapse [125], resulting in a sharp loss barrier at the midpoint.

Permutation symmetry, visualized in Figure 3.1 (a), refers to the property that applying a
permutation transformation P and its inverse P⊤ between any two consecutive hidden layers preserves
the network’s functionality. However, identifying the exact optimal permutation for all layers and clients
that minimizes their distance involves computationally expensive pairwise matching [126], making it
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Figure 3.1: Models exhibiting identical functionality may differ significantly in parameters due to NN symme-
tries.
impractical for large models [3, 127], thus, optimization methods have been proposed to approximate a
soft permutation [128–131]. However, prior work does not suffice for LoRA symmetry, as consequence
layers without non-linearity introduce invertible transformation symmetry.

LoRA symmetry extends beyond permutation invariance because the low-rank decomposition
W = BA is inherently non-unique [132]. Specifically, there exists a basis ambiguity, as any invertible
matrix T can produce an equivalent decomposition: B×A=BT×T−1A, as shown in Figure 3.1 (c). To
address this symmetry, methods include freezing A [76] and full-rank merging [133] are proposed.

Freezing A matrix of LoRA and limiting the training of only to B matrix [76], avoids the symmetry
problem as LoRA aggregation of N clients will be equivalent to full-rank aggregation:

1
N

N∑
i=0

(BiA∗) =
( 1
N

N∑
i=1

Bi

)( 1
N

N∑
i=1

A∗
)
.

However, freezing A limits the representation of LoRA and shows suboptimal convergence [79].
Full-rank merging reconstructs and aggregates the full-rank representation Wi = Bi×Ai, followed

by a low-rank SVD decomposition to find the resulting low-rank A and B matrices [133]:

A =
√
SV ⊤ ; B = U

√
S ; USV ⊤= SVD(W ) ; W = 1

N

N∑
i=0

Wi

However, full-rank merging introduces expensive reconstruction and decomposition of W , and it is im-
practical for heterogeneous scenarios with partial parameter sharing and aggregation [79,134].

Client heterogeneity refers to scenarios where clients train on vastly different tasks or data distri-
butions, resulting in divergent loss surfaces whose basins do not align [135]. In such cases, interpolating
between client models often leads to degraded performance across all tasks, rendering collaborative train-
ing counterproductive [3,128–131]. Nevertheless, while the full parameter spaces may remain misaligned,
several works have shown that clients can still share a common low-dimensional subspace where their loss
basins overlap [136–140]. Interpolation within these subspaces can capture shared knowledge, while the
remaining parameters are preserved as task-specific components, enabling personalization without harm-
ing global collaboration. Common approaches to build a shared subspace are using the same backbone
model with personalized heads [136, 137] or limiting the aggregation within aligned features [131, 139],
linearly connected [138], or correlated components [140].

LoRA Asymmetry suggests that matrices A and B play distinct roles in training. Specifically,
the optimal choice of A∗ is shown to be independent of the data distribution, implying that A captures
task-agnostic general knowledge, while B encodes task-specific personalized preferences [77]. Building
upon this, FedSA-LoRA [79] proposes a personalized FL approach that addresses client heterogeneity
by aggregating only the matrix A (for common knowledge) while personalizing matrix B, reducing
the communication cost and outperforms existing baselines. However, it does not address the LoRA
symmetry and maintains training consistency by limiting each round to only a few local steps.

27



In this work, we introduce APriLS (Aggregation of Principals in Low-rank via SVD), a novel
aggregation method that implicitly aligns client models by approximating full-rank aggregation without
reconstructing full-rank weights. APriLS follows a two-stage process: it first aligns and aggregates the
Ai matrices, then determines and aggregates the corresponding Bi matrices. In the PFL setting, where
only Ai matrices are communicated, A alignment occurs on the server, while B alignment is performed
locally on each client.

Our approach mitigates the LoRA misalignment and transformation symmetry in low-rank represen-
tation, and extensive theoretical analysis and empirical validation demonstrate that APriLS significantly
reduces communication frequency, enhances convergence stability, and provides robust personalization
capabilities. The primary contributions of our work are:

• Principal-Aligned LoRA Mechanism: We propose APriLS, an innovative aggregation tech-
nique using SVD on LoRA’s low-rank parameter matrices (A), aligning client models implicitly
without requiring full-rank reconstruction, external datasets, and averaging.

• Enhanced Communication Efficiency: Our federated protocol substantially reduces commu-
nication frequency by enabling extended local training intervals.

• Rigorous Convergence Analysis: We provide a comprehensive theoretical analysis, establishing
improved convergence guarantees and bounds.

• Extensive Empirical Validation: Our method is rigorously evaluated through comprehensive
experiments on GLUE benchmarks, affirming APriLS’s superior performance in accuracy, commu-
nication reduction, and personalization efficacy.

3.2 Related work
In this section, we outline the recent studies in PEFT of FMs and integration of this method in

FL settings, particularly focusing on communication-efficacy and personalization. We further discuss the
alignment problem and the limitations of current solutions in PFL for the LoRA architecture, highlighting
the importance of an aggregation method that works to mitigate the alignment problem directly in the
low-rank space.

Pre-Trained Foundation Model refers to large-scale pretrained models trained on broad data
that can be adapted to many tasks [141]. Early breakthroughs like BERT (110M parameters) [142] and
GPT-2 paved the way, but it was GPT-3 (175B) that epitomized the leap in scale. GPT-3 demonstrated
astonishing few-shot learning capabilities by its size [107]. Subsequent models such as LLaMA (7B–65B)
showed that state-of-the-art performance is possible even with open models, given enough training data
[143]. These PFMs achieve broad knowledge but are extremely expensive to train and deploy, and
fine-tuning such models for each downstream task is often infeasible [144].

Parameter-Efficient Fine-Tuning strategies have evolved to address the above issues, allowing
for the adaptation of large models by training only a few additional parameters [145–149]. LoRA is a
prominent PEFT technique, especially for large Transformer models, that freezes the original network
weights W and learns a pair of low-rank matrices B and A such that the weight update can be expressed
as ∆W =BA with B∈IRd×r, A∈IRr×k for W ∈IRd×k and r ≪ min(d, k) [59]. In other words, rather than
directly adjusting each of the d× k parameters in W , LoRA sketch ∆W in a low-dimensional subspace
spanned by A matrix, resulting in B projection matrix, drastically reducing the trainable parameters
and the memory needed to store updates, since only the much smaller A and B matrices are learned.
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LoRA in Federated Learning. Following LoRA’s success in PEFT, various studies integrated
LoRA architecture in FL for communication-efficiency [150], privacy-preservation [76], and personaliza-
tion [79]. However, the federated averaging [2] of LoRA faces a significant problem, as the low-rank
representation of ∆W is not unique and there are infinite possibilities to describe same weight matrix
as W = {BT × T−1A ∀ A,B, T | det(T ) ̸= 0 ∧BA = W}. Therefore, averaging the projection matrices
Bi from misaligned subspaces Ai results in poor correlation with actual full-rank weight averaging as:
1
N (B1A1 +B2A2 + · · ·+BNAN ) ̸= 1

N (B1 +B2 + · · ·+BN )× 1
N (A1 +A2 + · · ·+AN ).

Model merging refers to various approaches that have been proposed for overcoming LMC barriers
by addressing the permutation symmetry, client heterogeneity, and variance collapse to improve the
connectivity and compatibility of independently trained models [151]. In FL, addressing permutation
symmetry was first discussed in Probabilistic Federated Neural Matching (PFNM) [127] for linear models
and then extended for CNN and LSTM layers in Federated Matched Averaging (FedMA) [3]. In parallel
to these works, Optimal Transport (OT) [128] and Neuron Alignment [129] proposed an optimization
technique to find a continuous transformation as an approximation of soft permutation. Git-Rebasin [130]
estimates the permutation of the whole model layers via a fast discrete optimization, and offers a practical
solution for merging large-scale models. However, despite the success of these methods, minor errors in
weight reconstruction might lead to a significant difference in activations and model behavior.

Variance Collapse refers to the phenomenon where, even when two permutation-aligned models
lie within the same loss basin, linearly interpolating their weights can degrade performance [152]. This
occurs because matched neurons are only partially correlated, so averaging their weights reduces each
channel’s activation variance. The reduction intensifies with network depth, compressing the feature
dynamic range, distorting normalization statistics, and causing a sharp accuracy drop at the interpolation
midpoint. REPAIR addresses this issue by re-scaling each channel to a convex combination of the
endpoint variances, effectively restoring performance; however, this post-hoc renormalization is applied
after weight alignment and does not fundamentally resolve the underlying mismatch [125]. In contrast,
activation alignment provides a more direct solution by learning a data-dependent transformation that
minimizes activation differences across models. As introduced in Fed2 [131], activation alignment avoids
variance collapse altogether, since the transformation implicitly normalizes activations and preserves
interpolation performance without requiring explicit variance adjustments.

Client heterogeneity is another critical factor in LMC barriers, as merging models across dif-
ferent tasks or data distributions leads to poor performance on all of them. ZipIt! [139] generalizes
the Git-Rebasin idea that lets unmatched features stay separate and lets layers be partially merged.
Canonical Correlation Analysis (CCA) [140] drops the one-to-one permutation assumption entirely by
averaging correlated directions rather than individual neurons and scales easily to merging many models
simultaneously. Client heterogeneity refers to scenarios where clients train on vastly different tasks
or data distributions, resulting in divergent loss surfaces whose basins do not align [135]. In such cases,
interpolating between client models often leads to degraded performance across all tasks, rendering col-
laborative training counterproductive [3, 127–131]. Nevertheless, while the full parameter spaces may
remain misaligned, several works have shown that clients can still share a common low-dimensional
subspace where their loss basins overlap [7, 136–140]. Interpolation within these subspaces can capture
shared knowledge, while the remaining parameters are preserved as task-specific components, enabling
personalization without harming global collaboration. Common approaches to build a shared subspace
are using the same backbone model with personalized heads [136,137] or limiting the aggregation within
aligned features [131, 139], linearly connected [138], or correlated components [140]. Merging LoRA
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layers pose new challenges as doubling the number of layers, introducing a new type of symmetry, and
enforcing low-rank representation amplify the LMC barriers [153]. TIES-Merging [154] shows that includ-
ing sign flipping symmetries in addition to the permutation can significantly improve the misalignment
introduced by LoRA layers, LoRA-LEGO

LoRA asymmetry suggests that matrix A and B have different roles in training, as B creates new
features and A mainly routes them, hence tuning or merging B matters far more and freezing a random
A barely hurts accuracy [77]. Table 3.1 shows the difference between various methods introduced.

Method
Objectives (fixed = ✓) Properties / limitations (✓ desirable)

Complexity O(·)
LoRA Perm. Wt.Align Act.Align LowR NoFrz DataF GradF ContT ScalN Scald 1-Shot/Inv

FedAvg ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ NLrd

FedProx ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ NLrd

SCAFFOLD ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ NLrd

FedMA ✗ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ N2L(r3 + d3)

OT ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓ NLr(nd + Nr)

Git-Rebasin ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓

(
N
2

)
L(r3 + d2r)

ZipIt! ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ NLrd

REPAIR ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ NLrd

CCA ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ NLrd log d

TIES-Merge ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ NLrd

LoRA-LEGO ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗ TNLr2d

KnOTS ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ NL(r2d + d2)

LoRM ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ NLr2 + L(r3 + rd)

IterIS ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ TnNLrd

Mix-of-Show ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ TnNLrd

Twin-Merging ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ Ld2r + NLrd

APriLS (ours) ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ NLr2d + Lr3

Table 3.1: .

3.3 Methodology

In this section, we start by formally defining the misalignment problem due to LoRA symmetry and
formalize an optimal solution for aggregation to mitigate the misalignment issue for both FL and PFL
settings. Subsequently, we describe the APriLS process for constructing the optimal solution and its
integration within the FL process. Lastly, we provide the convergence analysis of APriLS, establishing
a tighter bound for client drift that allows less frequent communication and improves the efficiency of
PEFT in the FL framework.

3.3.1 Theoretical Analysis: Optimal solution and error bounds

The standard integration of LoRA within FL settings factorizes each model layer W ∈ Rd×d into
two matrices as W = BA, where B ∈ Rd×r and A ∈ Rr×d, with factorization rank r ≪ d. During each
FL round, client i uploads its local matrices Ai and Bi to the server. The server then aggregates these
parameters—typically by averaging—and broadcasts the aggregated results back to clients [2]. However,
separately averaging Ai and Bi does not equate to the full-rank averaging of the original layer parameters.
Formally, this inequality is given by:

1
N

N∑
i=0

(BiAi) ̸=
( 1
N

N∑
i=0

Bi

)( 1
N

N∑
i=0

Ai

)
.

Even in PFL, where clients only share their Ai matrices for aggregation [72, 79], separate low-rank
averaging differs from full-rank averaging. Specifically, when clients have equivalent full-rank parameters
Wi = BA ∀i, one expects no change in Ai, Bi after aggregation as Wi =

∑N
j=0 Wj/N . However, due to

30



the non-uniqueness of LoRA factorization (i.e., Wi = BA = (BT−1
i )(TiA)), low-rank averaging of the

Ai = TiA matrices yields:

Wi = BA ̸= BT−1
i

( 1
N

N∑
j=0

TjA
)

= Bi

( 1
N

N∑
j=0

Aj

)
.

Recent literature suggests solutions to avoid these issue through freezing Ai matrices in the clients
(FA-LoRA) [75–78], or averaging on full-rank reconstruction of Wi = BiAi and refactorization of
W̄ =

∑N
i=0 Wi/N into Ā =

√
SV ⊤ and B̄ = U

√
S, where USV ⊤ = SVD(W̄ ). However, the FA-

LoRA approach suffers from suboptimality [79] and full-rank averaging, besides additional computation
overhead, requires access to all LoRA parameters in the server, and does not apply to PFL strategies
that benefit from partial parameter sharing.

To mitigate these issues, we first define the aggregation error in FL and PFL settings as the deviation
from full-rank aggregation in Theorems 3.3.1 and 3.3.2. Given formal definitions, Theorem 3.3.3 shows
that the expected error of FedAvg for N clients, τ local steps, and the step size of η is bounded by
E[∥E∥2

F ] ≤ N−1/2τησAσB , where σA and σB assumed as the client drift bound for A and B matrices in
each step. One must reduce the error bound to a manageable threshold to stabilize the training process.
Therefore, the common practice is to select a modest τ and η. However, Theorems 3.3.4 and 3.3.5
establishes the optimal solution and error bound that reduce the client drifts for FL and PFL without
reconstruction of Wi = BiAi, allowing a faster convergence and higher τ . The proofs for Theorems 3.3.3
to 3.3.5 are in Section C.1.

Definition 3.3.1 (Aggregation Error in FL). Let Wi = BiAi with Bi ∈ Rd×r and Ai ∈ Rr×d be the
rank-r parameters of client i. The FL aggregation error is defined as:

EFL :=
∥∥ 1
N

N∑
i=1

BiAi −B′A′ ∥∥
F
,

where (B′, A′) ∈ Rd×r × Rr×d, denoting an aggregation outcome for Bis and Ais.

Definition 3.3.2 (Aggregation Error in PFL). Following notation in Theorem 3.3.1. The PFL aggre-
gation error, where the clients only share Ais globally, is defined as:

EPFL = 1
N

N∑
i=1

∥∥BiAi −B′
iA

′ ∥∥
F

where (B⋆i , A⋆) ∈ Rd×r × Rr×d, denoting a transformation of Bi and the aggregation of Ais.
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Figure 3.3: Models exhibiting identical functionality may differ significantly in parameters due to NN symme-
tries.

Proposition 3.3.3 (Expected error bound for factor-wise averaging). Let Wi = BiAi with Bi ∈ Rd×r

and Ai ∈ Rr×d be the rank-r parameters of client i after τ local steps with stepsize η starting from
a common initialization. Assume each per-step stochastic gradient is unbiased and has a finite second
moment E

[
∥∇Aℓi

∥∥2
F

]
≤σ2

A, E
[
∥∇Bℓi

∥∥2
F

]
≤σ2

B. Then the expected values for EFL and EPFL are:

E
[
∥EFL∥2

F

]1/2
≤ τησAσB√

N
; E

[
∥EPFL∥2

F

]1/2
≤ τησAσB

N

Proposition 3.3.4 (Factor-Wise Aggregation for Global FL). Following the notation Theorem 3.3.1
after the local training, form the Gram factor Gi := (B⊤

i Bi)1/2 ∈ IRr×r and define the weighted row-
stack as:

Ã =
[
G1A1 G2A2 . . . GNAN

]⊤
∈ IRNr×d.

Let the truncated rank-r SVD be Ã = UΣV ⊤
r , with Vr ∈ IRd×r whose columns are the r dominant right

singular vectors. Then the optimal solution (A∗, B∗) and error bound of Theorem 3.3.1 are:

A⋆ = V ⊤
r ∈ IRr×d, B⋆ = 1

N

N∑
i=1

Bi
(
AiVr

)
∈ IRd×r.

E
[∥∥ 1
N

N∑
i=1

BiAi −B⋆A⋆
∥∥2
F

]1/2
≤ τη σB√

N

(∑
j>r

σ2
j (Ã)

)1/2
≤ τη σBσA√

N

where σj(Ã) are the singular values of Ã and σ2
B := 1

N

∑N
i=1 σ

2
B,i with σ2

B,i the second moment of the
per-step gradient on Bi.

Proposition 3.3.5 (Factor-Wise Aggregation for Personalized FL). Following the notation Defini-
tion 3.3.2 after the local training, let each client form the Gram factor Gi := (B⊤

i Bi)1/2 ∈ IRr×r locally
and uploads GiAi to the server. We define the weighted row-stack as:

Ã =
[
G1A1 G2A2 . . . GNAN

]⊤
∈ IRNr×d.

Let the truncated rank-r SVD be Ã = UΣV ⊤
r , with Vr ∈ IRd×r whose columns are the r dominant right

singular vectors. The optimal A∗ that is computed and broadcast by the server, and the optimal B∗
i that

is calculated at the client i given A∗, with the error bound of Theorem 3.3.2 are as:

A⋆ = V ⊤
r ∈ IRr×d, B⋆i = Bi

(
AiA

⋆⊤) ∈ IRd×r.
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E
[ ∥∥BiAi −B⋆i A⋆∥∥2

F

]1/2
≤ τη σB

N

(∑
j>r

σ2
j (Ã)

)1/2
≤ τη σBσA

N

where σj(Ã) are the singular values of Ã and σ2
B := 1

N

∑N
i=1 σ

2
B,i with σ2

B,i the second moment of the
per-step gradient on Bi.

Algorithm 3 APriLS for PFL
Input: N clients, R rounds, LoRA rank r,
datasets {Di}N

i=1, and the same initialization
Ai ← N (0, σ)r×d, Bi ← 0d×r,

Procedure:
1: for r in 1, . . . , R do

Client-Side: For all clients in parallel i ∈ [1, N ]
2: Ai, Bi ← Train

(
Di, Bi, Ai

)
3: Gi = SafeSQRT(Bi

⊤ ×Bi)
4: Zi = Gi ×Ai

5: Send Zi to the server
Server-Side:

6: collect {Zi}N
i=1

7: stack into Zstack ← {Zi}N
i=1 ∈ IRNr×d

8: (U, S, V ⊤)← TruncatedSVD(Zstack, r)
9: broadcast V ⊤ ∈ IRr×d

Client-Side: For all clients in parallel i ∈ [1, N ]
10: Qi ← Ai × V

11: Bi ← Bi × Qi # update B matrix
12: Ai ← V ⊤ # update A matrix
13: end for

Algorithm 4 APriLS for FL
Input: N clients, R rounds, LoRA rank r,
datasets {Di}N

i=1, and the same initialization
Ai ← N (0, σ)r×d, Bi ← 0d×r,

Procedure:
1: for r in 1, . . . , R do

Client-Side: For all clients in parallel i ∈ [1, N ]
2: Ai, Bi ← Train

(
Di, Bi, Ai

)
3: Send Ai and Bi to the server

Server-Side:
4: for i in 1, . . . , N do
5: Gi = SafeSQRT(B⊤

i ×Bi)
6: Zi = Gi ×Ai

7: end for
8: stack into Zstack ← {Zi}N

i=1 ∈ IRNr×d

9: (U, S, V ⊤)← TruncatedSVD(Zstack, r)
10: for i in 1, . . . , N do
11: Qi ← Ai × V

12: B′
i ← Bi × Qi

13: end for
14: B̄ = 1

N

∑N

i=0 B′
i

15: broadcast B̄ and V ⊤ ∈ IRr×d as Bi and Ai.
16: end for

3.3.2 Aggregation of Principals in Low-rank via SVD (APriLS)

This subsection explains how the aggregation outlined in Proposition 3.3.4 and 3.3.5 in Section 3.3.1
is achieved in practice. Figures 3.2 and 3.3 visualizes the outline of these procedures as described in
Algorithms 3 and 4.

Personalized FL. In each round, clients train the model locally, resulting in low-rank matrices
for each layer as Ai and Bi. Instead of directly sharing Ai matrices with the server, in APriLS, clients
compute the Gram factor Gi =

√
(B⊤

i Bi) and then compute the weighted row-stack Zi = GiAi, and the
server receives the Zi matrices, which are then stacked into a single matrix Zstack ∈ IRNr×d. The server
then computes the truncated SVD of Zstack to obtain the right singular vectors Vr ∈ IRd×r, which are
broadcasted to clients. Each client then computes the transformation Qi = AiV

⊤
r and updates its Bi

matrix as B′
i = BiQi. This allows clients to update their Bi matrices without needing to reconstruct the

full-rank parameters, as they only need to compute the product of Bi and Qi.
Globalized FL. In the global FL setting, clients train their models locally and share both Ai and

Bi matrices with the server. The server computes the Gram factor Gi =
√

(B⊤
i Bi) and the weighted

row-stack Zi = GiAi, similar to the personalized FL setting. The server then stacks these matrices into
a single matrix Zstack ∈ IRNr×d and computes the truncated SVD to obtain the right singular vectors
Vr ∈ IRd×r. Next, the server computes the transformation Qi = AiV

⊤
r for each client and updates the Bi

matrices as B′
i = BiQi. Finally, the server averages the updated B′

i matrices to obtain B̄ = 1
N

∑N
i=0 B

′
i,
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which is broadcasted back to clients along with V ⊤
r for updating their Ai matrices.

3.4 Results and Discussion

We evaluated APriLS on various tasks from GLUE in both personalized and global FL settings,
comparing it against state-of-the-art methods such as FedAvg, FedProx, FedMA, FFA-LoRA and KnOTS.
The results demonstrate that APriLS achieves superior performance in terms of accuracy and convergence
speed across all tasks and allows for a larger number of local steps per round, leading to more efficient
training. We use Roberta-Large with 357M parameters and LoRA rank of 16 for all experiments. The
datasets are split into 100 clients and the results are averaged over 3 runs with different random seeds.

Figure 3.4 shows the accuracy per number of local steps for each method in personalized FL settings.
It shows that APriLS consitantly outperforms other methods, given same amount of local steps, and it
can perform more local steps per round than other methods, leading to faster convergence. The results
for global FL settings are similar, with APriLS achieving better performance and faster convergence
compared to other methods as shown in Figure 3.5. Appendix C.2 provides include the tables including
the results for all tasks in both personalized and global FL settings, showing that APriLS consistently
outperforms other methods across all tasks.

Figure 3.4: Accuracy per number of local steps in personalized FL settings.

Figure 3.5: Accuracy per number of local steps in global FL settings.

3.5 Ablation Study

We conducted an ablation study to evaluate the impact of different components of APriLS on the
performance and convergence speed. The results are shown in Figure 3.6. The first plot shows the
effect of varying the number of rounds to reach 80% accuracy, demonstrating that APriLS requires
fewer rounds compared to other methods. The second plot shows the computation time required to
reach 80% accuracy, indicating that APriLS is more efficient in terms of computation. The third plot
shows the power law relation between computation and communication required to reach 80% accuracy,
confirming that APriLS exhibits around 3 to 1 exchange rate between computation and communication,
which is significantly better than other methods that require more communication for the same level of
computation. Therefore, increasing the number of rounds to reach 80% accuracy leads to a significant
reduction in communication while adding around 1/3 of computation overhead.
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Figure 3.6: Ablation study of APriLS. (a) Number of rounds to reach 80% accuracy, (b) Computation time to
reach 80% accuracy, (c) Power law relation between computation and communication to reach 80% accuracy.

3.6 Conclusion

In this chapter, we introduced APriLS, a novel method for merging LoRA layers in federated and
personalized learning settings. APriLS addresses the misalignment issue caused by LoRA symmetry by
leveraging the properties of low-rank matrices and truncated SVD to achieve optimal aggregation without
reconstructing full-rank parameters. The theoretical analysis shows that APriLS achieves a tighter
convergence bound than existing methods, allowing for more efficient training with fewer communication
rounds. The experimental results demonstrate that APriLS consistently outperforms state-of-the-art
methods in terms of accuracy and convergence speed across various tasks in both personalized and
global FL settings.
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Conclusion

This thesis has addressed key challenges in federated learning by introducing comprehensive method-
ologies to enhance communication efficiency, model alignment, and personalization capabilities. The
developed frameworks systematically address critical bottlenecks limiting the scalability, robustness, and
effectiveness of federated learning systems.

Chapter 1 provided a foundational overview, systematically identifying existing limitations in
FL methodologies related to communication overhead, model misalignment, and personalization. The
extensive literature review and critical analysis set the stage for subsequent methodological innovations
presented in the thesis.

Chapter 2 proposed the Model-Agnostic Projection Optimization (MAPO) framework, an
innovative, architecture-independent gradient decomposition technique that dynamically adjusts com-
munication costs through model-level optimizations. MAPO demonstrated substantial improvements in
communication efficiency, convergence stability, and scalability through rigorous theoretical analyses and
empirical validations across diverse datasets and model architectures.

Building upon MAPO, Chapter 3 introduced Aggregation of Principals in Low-rank via
SVD (APriLS), directly addressing alignment and symmetry challenges prevalent in federated low-
rank adaptations. APriLS employed principal-aligned SVD aggregation, effectively mitigating client
drift and enabling stable, personalized federated learning. Theoretical convergence analyses and extensive
empirical studies on widely recognized benchmarks affirmed APriLS’s superiority over traditional FL and
personalized FL methods.

Together, these methodological advances significantly contribute to the practical deployment and
theoretical understanding of federated learning, addressing critical real-world challenges of communica-
tion efficiency, decentralized model alignment, and personalized adaptation. Future research directions
include further enhancements in optimization strategies, tighter integration with privacy-preserving tech-
niques, and adaptation to emerging federated learning scenarios, reinforcing the foundational contribu-
tions of this thesis and promoting continued innovation in decentralized learning systems.
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Appendices



Chapter A. Supplementary Material for Chapter 1

A.1 Complexity Analysis

Our proposed method significantly reduces communication overhead in federated learning. However,
this reduction in communication comes at the cost of an increase in computation and memory usage on
the client side. In this section, we provide a comprehensive analysis of these complexity trade-offs
and discuss potential strategies to alleviate the added burdens. Specifically, we present an analysis
of the computational, memory, and communication complexities of our proposed model and provide a
comparative assessment against existing baselines.

In this analysis, E stands for the number of local epochs executed within a single communication
round, M indicates the total number of clients, N represents the population size per client, and |θ|
denotes the dimension of the model parameter vector.

Table A.1 presents the order of time and memory complexities for each method where we do not
employ parallelization for ES and EvoFed computation. Here, clients generate perturbations one by one
and reuse the memory after the fitness measurement of a perturbed sample. As shown in Table A.1,
EvoFed without parallelization has a similar order of memory complexity in clients to conventional
FL, i.e., FedAvg, and reduced memory complexity in the server. However, in this scenario, the time
complexity for EvoFed grows linearly with the number of perturbations as compared to FedAvg.

Table A.1: Comparison of time and memory complexities for ES, EvoFed, and FedAvg, without parallel
processing of N individual perturbed models.

Method Client Time Client Memory Server Time Server Memory
ES O(N |θ|) O(|θ|) O(N(|θ| + M)) O(|θ| + MN)
EvoFed O(N |θ| + E|θ|) O(|θ|) O(N(|θ| + M)) O(|θ| + MN)
FedAvg O(E|θ|) O(|θ|) O(M |θ|) O(M |θ|)

To mitigate the time complexity in EvoFed, one approach is to generate and evaluate a batch of T
perturbations in parallel. This method poses a trade-off between time and memory complexity.

Partitioning (as discussed in the main text) is an alternative strategy that enables computing a
higher number of fitness values for each perturbation by dividing it into K partitions. Consequently,
the algorithm requires a fewer perturbations N ′ to obtain sufficient fitness values for gradient encoding,
resulting in a reduction in memory complexity. This necessitates the transmission of N ′K fitness values
to the server. While partitioning does not introduce additional time complexity, having a small number
of perturbations restricts the algorithm’s exploration capabilities in parameter space, as discussed in
Section A.4.1. Therefore, in practice, we choose the population size to be N

K ≤ N
′ ≤ N , trading memory

complexity with communication cost.
Table A.2 provides a comparative analysis of the time and memory complexities for EvoFed and

FedAvg when both T individual perturbed models are processed in parallel, and each perturbed model
sample is divided into K partitions. In scenarios with enough memory, it is feasible to execute all
perturbations in a parallel setting T = N and without partitioning K = 1 and N = N ′.

As discussed before, the communication complexity of ES and EvoFed is limited to transferring
fitness values O(N ′K) while FedAvg is to the gradient signal O(|θ|). However we can apply additional
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Table A.2: Comparison of time and memory complexities for EvoFed and FedAvg, with parallel pro-
cessing of T individual perturbed models and where each perturbation is partitioned to K segments.

Method Client Time Client Memory Server Time Server Memory
EvoFed (Parallel) O( N

T
|θ| + E|θ|) O(T |θ|) O( N

T
(|θ| + M)) O(N |θ| + MN)

EvoFed (Partitioned) O(N ′|θ| + E|θ|) O(N ′|θ|) O(N ′(|θ| + M)) O(N ′|θ| + MKN ′)
EvoFed (Both) O( N′

T
|θ| + E|θ|) O(T |θ|) O( N′

T
(|θ| + M)) O(N ′|θ| + MKN ′)

FedAvg O(E|θ|) O(|θ|) O(M |θ|) O(M |θ|)

compression on each method to reduce this complexity as explored in Section A.4.1.

A.2 Model Architecture and Optimization Hyperparameters
We used a CNN model with 11k parameters for the MNIST and FMNIST datasets and a bigger

model with 2.3M parameters for CIFAR-10, with architectural details provided in Table A.5 and Table
A.6 respectively. We also provide detailed information about the optimization hyperparameters e.g.
learning rate (lr), momentum and batch size, etc. for MNIST and FMNIST in Table A.3 and for Cifar-
10 in Table A.4:

Table A.3: Hyperparameters used in experiments on dataset MNIST & FMNIST
Model Methods Hyperparameters

batch size lr momentum optimizer lr es momentum es optimizer es w decay sigma eps β 1&β 2

CNN ES 128 - - - 0.0148 0.9 sgd 0.0 0.27 1e-8 0.99 & 0.999

FedAvg 256 0.0111 0.8099 sgd - - - - - - -

Fed-quant 256 0.0111 0.8099 sgd - - - - - - -

Fed-sparse 256 0.0111 0.8099 sgd - - - - - - -

EvoFed (ours) 256 0.0873 0.9074 sgd 0.0427 0.9 sgd 0.0152 0.27 1e-8 0.99 & 0.999

Table A.4: Hyperparameters used in experiments on dataset CIFAR-10
Model Methods Hyperparameters

batch size lr momentum optimizer lr es momentum es optimizer es w decay sigma eps β 1&β 2

CNN ES 32 - - - 0.04 0.4815 sgd 0.0 0.35 1e-8 0.99 & 0.999

FedAvg 128 0.0009 0.6132 sgd - - - - - - -

Fed-quant 128 0.0009 0.6132 sgd - - - - - - -

Fed-sparse 128 0.0009 0.6132 sgd - - - - - - -

EvoFed (ours) 64 0.0148 0.3011 sgd 0.0275 0.5239 sgd 0.0824 0.35 1e-8 0.99 & 0.999

A.3 Convergence Analysis

Assumption A.3.1. For each j, Lj(v) is β-smooth, i.e., ∥∇Lj(u)−∇Lj(v)∥ ≤ β∥u− v∥ for any u, v.

Assumption A.3.2. Variance of the gradient of Dj is bounded, E
[∥∥∥∇Lj(θ)− ∇̃Lj(θ)∥∥∥2

]
≤ B2.

Assumption A.3.3. When perturbation ϵi is sampled from the population distribution pψ, a condi-
tioned mirrored sampling is applied such that 1

N

∑N
i=1 ϵ

i = 0, 1
M

∑N
i=1
(
ϵi
)2 ≤ G2, 1

N

∑N
i=1
(
ϵi
)3 = 0.
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Table A.5: Detailed information of the CNN architecture used in MNIST & FMNIST experiments
Layer Parameter & Shape (cin, cout, kernal size) & hyper-parameters #

layer1 conv1: 1 × 8 × 5 × 5, stride:(1, 1); padding:0 ×1
avgpool ×1

layer2 conv1: 8 × 16 × 5 × 5, stride:(1, 1); padding:0 ×1

avgpool ×1
fc: 16 × 10 ×1

Table A.6: Detailed information of the CNN architecture used in CIFAR-10 experiments
Layer Parameter & Shape (cin, cout, kernal size) & hyper-parameters #

layer1 conv1: 3 × 64 × 5 × 5, stride:(1, 1); padding:0 ×1
avgpool ×1

layer2 conv1: 64 × 128 × 5 × 5, stride:(1, 1); padding:0 ×1

avgpool ×1
fc: 128 × 256 ×1
fc: 256 × 10 ×1

Theorem A.3.4. Given a decreasing learning rate ηt < 1
4αβ , EvoFed has the convergence bound as:

1
HT

T−1∑
t=0

ηtE
[
∥∇L(θt)∥2

]
≤ E [L(θ0)]− L∗

αG2HT
+ 4αβB2

(
1
HT

T−1∑
t=0

η2
t

)

where HT =
∑T−1
t=0 ηt, and L∗ represents the minimum value of L(θ).

By β-smoothness of L(θ) and taking expectation on both sides, we have

E [L(θt+1)− L(θt)] ≤ E [⟨∇L(θt), θt+1 − θt⟩] + β

2E
[
∥θt+1 − θt∥2] (A.1)

Proof. By utilizing the proof of Lemma 1 and recognizing ⟨·, ·⟩ as the inner product operation, we
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rewrite the first term E [⟨∇L(θt), θt+1 − θt⟩] as follows:

E [⟨∇L(θt), θt+1 − θt⟩] =
(a)

E

〈∇L(θt),
1
M

M∑
j=1

α

Nσ

N∑
i=1

f(θt,j + σϵit)ϵit

〉
=
(b)

E

〈∇L(θt),
1
M

M∑
j=1

α

Nσ

N∑
i=1
∥(θt,j + σϵit)− (θ

′

t,j)i∥2ϵit

〉
= −E

〈∇L(θt),
1
M

M∑
j=1

α

Nσ

N∑
i=1
∥(θt,j + σϵit)

− (θt,j − ηt∇̃Lj(θt,j))∥2ϵit

〉
= −E

〈∇L(θt),
1
M

M∑
j=1

α

Nσ

N∑
i=1
∥(σϵit) + ηt∇̃Lj(θt,j)∥2ϵit

〉
= −E

〈∇L(θt),
1
M

M∑
j=1

α

Nσ

N∑
i=1

(
σ2 (ϵit)3 + 2σ

(
ϵit
)2
ηt∇̃Lj(θt)

+ ϵitη
2
t ∥∇̃Lj(θt)∥2

)〉
≤
(c)
−E

〈∇L(θt),
1
M

M∑
i=j

α

σ

(
2σG2ηt∇̃Lj(θt)

)〉
=
(d)

(−2αηtG2) E

〈∇L(θt),
1
M

M∑
j=1
∇Lj(θt)

〉

=
(e)

(−αηtG2)

E
[
∥∇L(θt)∥2]+ E

∥ 1
M

M∑
j=1
∇Lj(θt)∥2



−E

∥∇L(θt)−
1
M

M∑
j=1
∇Lj(θt)∥2


︸ ︷︷ ︸

=0



where (a) comes from the Lemma 1, (b) is due to f(θt) = −∥θt − θ
′

t∥2, (c) follows from Assumption 3,
(d) is from taking expectation for the mini-batch, and (e) is due to the well-known equality ∥z1 − z2∥2 =
∥z1∥2 + ∥z2∥2 − 2 ⟨z1, z2⟩.
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On the other hand, we can bound the second term E
[
∥θt+1 − θt∥2] as follows:

E
[
∥θt+1 − θt∥2] = E


∥∥∥∥∥∥ 1
M

M∑
j=1

α

Nσ

N∑
i=1

f(θt + σϵit)ϵit

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1
M

M∑
j=1

α

Nσ

N∑
i=1
∥(θt + σϵit)− θ

′

t∥2ϵit

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1
M

M∑
j=1

α

Nσ

N∑
i=1
∥(θt + σϵit)− (θt − ηt∇̃Lj(θt))∥2ϵit

∥∥∥∥∥∥
2


= E


∥∥∥∥∥∥ 1
M

M∑
j=1

α

Nσ

N∑
i=1

(
σ2 (ϵit)3 + 2σ

(
ϵit
)2
ηt∇̃Lj(θt) + ϵitη

2
t ∥∇̃Lj(θt)∥2

)∥∥∥∥∥∥
2


≤
(a)

E


∥∥∥∥∥∥ 1
M

M∑
j=1

α

σ

(
2σG2ηt∇̃Lj(θt)

)∥∥∥∥∥∥
2
 = E

(4α2G2η2
t )

∥∥∥∥∥∥ 1
M

M∑
j=1
∇̃Lj(θt)

∥∥∥∥∥∥
2


≤
(b)

(8α2G2η2
t )E


∥∥∥∥∥∥ 1
M

M∑
j=1
∇Lj(θt)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1
M

M∑
j=1
∇Lj(θt)−

1
M

M∑
j=1
∇̃Lj(θt)

∥∥∥∥∥∥
2


≤
(c)

(8α2G2η2
t )

E


∥∥∥∥∥∥ 1
M

M∑
j=1
∇Li(θt)

∥∥∥∥∥∥
2
+B2



where (a) comes from Assumption 3, (b) is due to ∥a+ b∥2 ≤ 2 ∥a∥2 + 2 ∥b∥2, and (c) is by Assumption
2.

By applying the aforementioned bounds of E [⟨∇L(θt), θt+1 − θt⟩] and E
[
∥θt+1 − θt∥2] to (A.1), we

obtain:

E [L(θt+1)− L(θt)] ≤ E [⟨∇L(θt), θt+1 − θt⟩] + β

2E
[
∥θt+1 − θt∥2]

≤ E

(−αηtG2)

∥∇L(θt)∥2 + ∥ 1
M

M∑
j=1
∇Lj(θt)∥2


+(4α2βG2η2

t )


∥∥∥∥∥∥ 1
M

M∑
j=1
∇Lj(θt)

∥∥∥∥∥∥
2

+B2




= −αηtG2E
[
∥∇L(θt)∥2

]
+ αηtG

2(4αβηt − 1)E


∥∥∥∥∥∥ 1
M

M∑
j=1
∇Lj(θt)

∥∥∥∥∥∥
2


︸ ︷︷ ︸
≤0 if we choose ηt≤ 1

4αβ

+(4α2βG2η2
t )B2

≤ −αηtG2E
[
∥∇L(θt)∥2

]
+ (4α2βG2η2

t )B2
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Eventually, through the telescoping sum for t = 0, 1, ..., T − 1, we obtain

L∗ − E [L(θ0)] ≤
T−1∑
t=0

(−αηtG2)E
[
∥∇L(θt)∥2

]
+
T−1∑
t=0

(4α2βG2η2
t )B2

where L∗ represents the minimum value of L(θ).
After performing division on both sides by HT =

∑T−1
t=0 ηt, and employing some manipulations, we

obtain
1
HT

T−1∑
t=0

ηtE
[
∥∇L(θt)∥2

]
≤ E [L(θ0)]− L∗

αG2HT
+ 4αβB2

(
1
HT

T−1∑
t=0

η2
t

)
(A.2)

By utilizing a decreasing learning rate (e.g., ηt = η0
1+t ), it can be seen that HT =

∑T−1
t=0 ηt → ∞ as T

increases, while
∑T−1
t=0 η2

t < ∞. Consequently, the upper bound stated in Equation (A.2) approaches 0
as T grows, ensuring convergence towards a stationary point.

A.4 Additional Experimental Result

In this section, we delve into the impacts of various parameters on both the training and commu-
nication rate. We first study the role of population size and the number of clients. Subsequently, we
investigate the effect of additional compression techniques, such as sparsification, ranking, and quanti-
zation, on the model’s performance. Lastly, we assess the efficacy of partitioning on clients in attaining
better accuracy, and its relationship with the population size.

A.4.1 Sparsification, Quantization, and Partitioning

In this section, we explore the effect of fitness sparsification i.e. selecting top-k fitness values from the
fitness vector of the whole population based on magnitude. We examined the effects of sparsification on
two distinct population sizes: 128 and 1024. Without any sparsification, both populations demonstrated
comparable performance. However, when we select the top-k most fit values, the denser population
(comprising 1024 members) could tolerate a higher degree of sparsification compared to the less populous
one (with 128 members).

To enable a fair and insightful comparison between the two population sizes, our focus was on
assessing performance based on the number of members remaining post-sparsification rather than di-
rectly contrasting sparsification rates. We placed particular emphasis on the best and worst performing
members, as they exert the most significant influence on the model update process in ES.

Fig. A.1(a) and (b) visualize the sparsification process for populations of 128 and 1024, respectively,
illustrating the performance decline that occurs as the number of remaining members diminishes.

Fig. A.1(c) provides further insights into the performance improvements achieved by selecting top-
8 or top-16 members from the initial set of 128 or 1024, as compared to optimizing with the whole
population of 8 or 16.

Our results underline the crucial role that population size plays in exploring optimal solutions, over-
shadowing even the significance of compression rate. A larger population allows for broad exploration
that can later be compressed to a smaller number of members without a performance loss. However,
initiating the process with a smaller population cannot achieve equivalent performance due to the re-
stricted exploration. Therefore, population size is a critical factor affecting the efficacy of exploration in
evolutionary strategies.
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Figure A.1: Effect of sparsification on EvoFed

In this section, we examine the sensitivity of EvoFed to the precise value of fitness. We propose
two techniques to reduce the bits required to represent the fitness vector, thus enhancing compression
without compromising performance. For a clearer understanding of these methods’ impacts, we chose a
population size of 32, which is relatively less populated and has minimal redundancy, highlighting the
insensitivity of EvoFed to precise fitness values.

Fig. A.2(a) depicts the effect of quantization with varying bit numbers. The legend represents the
number of bits used for quantization as a numeral followed by the letter Q, where Q32 indicates no
compression and Q1 signifies transmitting a single bit (either 0 or 1) in place of the fitness value. The
result exhibits a marginal performance loss even with Q2, illustrating EvoFed’s insensitivity to precise
fitness values and the potential for further compression gains through quantization.

Fig. A.2(b) presents the performance when we transmit the member’s rank within the population
instead of the fitness value. In the legend, the number of samples assigned the same rank is denoted
as a numeral following the letter R; R32 indicates assigning 32 different ranks to all members, and R1
implies assigning the same rank to every member. This ranking technique, a common practice in the
Evolutionary Strategies literature, is typically employed when fitness values derived from the environment
are noisy, and the quality of the solution can be improved by transmitting the ranking instead. However,
where we have high-quality fitness measures derived from L2 loss, this technique only slightly improves
the performance while reducing compression gains. By assigning the same rank to neighbouring samples
within the fitness ranking, we can further enhance compression performance.

Comparing ranking and quantization, it is observed that quantization delivers superior performance
with the same number of bits. Additionally, the number of bits used in quantization is independent of
the population size, making quantization a more appropriate approach for compressing fitness values.

The EvoFed’s partitioning technique, as described in the main text, features a unique attribute that
enhances performance. This technique maintains a fixed number of population samples at each client,
thereby addressing memory limitations on the clients but necessitating increased communication as a
trade-off. Although sparsification results underscore the importance of population size for exploration,
partitioning presents an additional approach that navigates the limitation posed by the compression rate
to improve performance.

Figure A.3 illustrates the impact of partitioning in four scenarios, each with a different population
size. The results emphasize that partitioning is most effective when the clients cannot manage a sufficient
number of samples to attain satisfactory performance. Partitioning enables us to gather more information
from the limited sample size.

Each sub-figure in Figure A.3 includes baselines without partitioning, allowing for the comparison
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Figure A.2: Effect of Quantization on EvoFed

of improvements achievable either through an increased population size or the use of more partitions
while maintaining a consistent communication rate. The legend of each figure specifies the number of
partitions (the number following the letter k) and the population of the baselines (the number following
the letter p). The volume of information required to be communicated for one round is also depicted for
each method in the legend.

Figure A.3 clearly shows that using population sizes of 32 and 128 results in only a marginal
improvement in performance. However, when utilizing population sizes of 8 and 16, a significant and
noticeable improvement can be observed.
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Figure A.3: Effect of partitioning on EvoFed
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A.4.2 Larger Dataset and Model

Additionally, we investigate the efficacy of EvoFed in the context of a larger model and a bigger
dataset. Figure A.4(a) showcases the performance on CIFAR-100 dataset with the same model parame-
ters as those used in the CIFAR-10 experiment. The results show that EvoFed, although having a slower
convergence rate, achieves higher performance than FedAvg eventually, with a significant compression
rate. Figure A.4(b) illustrates the performance gain on CIFAR-10 dataset when the CNN layers are
doubled. As the experimental result shows, having a larger model generally leads to better performance
with slower convergence. EvoFed follows the same trend as BP in a centralized setting, suggesting the
compression has not been affected by model size. All experiments were conducted with a population size
of 32 and 50 partitions.
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Figure A.4: Larger dataset and Model: (a) shows performance on CIFAR-100, and (b) depicts the impact of
having a larger model on CIFAR-10.
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Chapter B. Supplementary Material for Chapter 2

B.1 Accuracy and Communication Learning curves

This appendix provides extended experimental results that complement the main findings discussed
in Section 2.5. We include detailed evaluations of MAPO and baseline methods on CIFAR-100, TinyIm-
ageNet, and Sentiment140 datasets. Similar to the main results, Figure B.1 reports both maximum test
accuracy and the communication cost required to reach a given accuracy threshold. These additional
experiments further demonstrate MAPO’s superior communication efficiency and consistent performance
gains across more challenging and large-scale tasks.
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Figure B.1: Performance comparison of MAPO and baseline methods on CIFAR100, TinyImagenet, and
Sentiment140 datasets. The top row shows the accuracy achieved by each method on the respective datasets,
while the bottom row illustrates the communication cost associated with each method.

B.2 Comparison with Low-Rank Adaptation in Fine-tuning

We conduct fine-tuning experiments using RoBERTa-large on five GLUE tasks to evaluate MAPO
alongside LoRA, FA-LoRA, and SA-LoRA. Table B.1 compares the number of trainable parameters
and the communication load per round for each method. Table B.2 summarizes fine-tuning results
under federated settings, reporting communication efficiency based on the number of rounds and total
communication required to reach 80% accuracy. Overall, the results indicate that MAPO improves
communication efficiency without compromising performance.
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Table B.1: Number of trainable and communication parameters per round for different methods.
Method Number of trainable parameters Number of communication parameters per round

LoRA 1.83M 0.78M
FA-LoRA 1.44M 0.39M
SA-LoRA 1.83M 0.39M
MAPOd/1k 357M 0.36M
MAPOd/10k 357M 35.70K
MAPOd/100k 357M 3.57K
MAPOd/1m 357M 357

Table B.2: Comparison of model accuracies, communication rounds, and total communication cost.
Model SST2 QNLI RTE MNLIm MNLImm

Acc Round Total Acc Round Total Acc Round Total Acc Round Total Acc Round Total

LoRA 84.86 36 28.08M 91.72 85 66.30M 86.62 180 140.40M 87.41 86 67.08M 87.34 82 63.96M
FA-LoRA 94.15 44 17.16M 91.63 76 29.64M 57.28 — — 85.92 76 29.64M 86.46 213 83.07M
SA-LoRA 95.41 19 7.41M 91.04 55 21.45M 70.01 — — 89.44 29 11.31M 85.49 126 49.14M
MAPOd/1k 96.79 5 1.78M 93.14 11 3.93M 87.91 23 8.21M 88.90 17 6.07M 88.26 22 7.85M
MAPOd/10k 96.10 5 178.50K 92.57 8 285.60K 89.57 23 821.10K 88.81 18 642.60K 87.43 25 892.50K
MAPOd/100k 95.53 5 17.85K 89.24 7 24.99K 84.38 24 85.68K 85.04 20 71.40K 84.60 29 103.53K
MAPOd/1m 90.37 7 2.50K 80.09 34 12.14K 57.04 — — 72.46 — — 37.76 — —

B.3 Comparison with Factorized-FL

In this section, we present a detailed comparison between MAPO and Factorized-FL as a repre-
sentative of the parameter decomposition methods. Factorized-FL can be interpreted as a variant of
rank-1 LoRA, where a sparse bias matrix substitutes for LoRA’s frozen fine-tuned weights, initialized
to zero. Table B.3 reports the communication efficiency of MAPO and Factorized-FL on CIFAR-10
and SVHN datasets, evaluated under both IID and non-IID partitions. Each column denotes the to-
tal communication in GB required to reach X% of FedAvg’s final test accuracy. Results show that
MAPO achieves significantly lower communication costs compared to Factorized-FL while maintaining
competitive performance across both datasets and data distributions.

Table B.3: Communication cost comparison across different methods on SVHN and CIFAR-10 under
IID and Non-IID settings.

Method
SVHN CIFAR-10

Com/Round
IID@80% IID@90% Non-IID@80% Non-IID@90% IID@80% IID@90% Non-IID@80% Non-IID@90%

FedAvg 183.51 244.68 285.46 509.75 305.85 407.80 326.24 652.48 20.39GB
Factorized-FL 127.75 182.50 146.00 219.00 182.50 292.00 200.75 310.25 18.25GB
MAPO2k 0.32 0.79 0.56 – 0.32 – 0.94 – 0.78MB
MAPO16k 0.08 0.18 0.12 0.27 0.08 0.18 0.23 0.45 6.25MB
MAPO40k 3.84 8.64 5.76 13.12 3.84 8.64 10.88 21.12 0.32GB

B.4 Implementation details and Hyperparameters

All experiments were conducted on a single NVIDIA RTX 3090 with 24 GB of memory. The main
experiments and baselines are implemented with JAX [55]. The GLUE tasks and LLM fine-tuning
implementation use Hugging Face libraries and models implemented in FederatedScope [155] with half
precision (i.e., 16-bit float). The model configuration and training used in this work are provided in
Tables B.4 and B.5.
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Table B.4: Neural network configurations for different datasets.
Dataset Model type # Conv Kernel Hidden features # Linear # Output # Parameters

MNIST CNN 2 5×5 8, 16 1 10 11.3K
FMNIST CNN 2 5×5 8, 16 1 10 11.3K
CIFAR-10 CNN 4 5×5 64, 64, 128, 128 2 10 1.1M
CIFAR-100 WideResNet 16 3×3 64×4, 128×4 2 100 2.8M
TinyImageNet WideResNet 16 3×3 64×4, 128×4 2 200 2.88M
Shakespeare LSTM - - 256, 8 (embed) 2 65 814K
Sentiment140 Transformer - - 512, 96 (embed) 2 2 2.2M
SVHN CNN 4 5×5 64, 64, 128, 128 2 10 1.1M
GLUE RoBERTa-large - - 1024 (hidden) 2 Varies 357M

Table B.5: Training hyperparameters for FedAvg and variants.
Hyperparameter MNIST FMNIST CIFAR-10 CIFAR-100 TinyImageNet Sentiment140 Shakespeare SVHN GLUE

Batch size 32 32 32 32 32 32 32 32 128
Optimizer SGD SGD SGD AdamW AdamW SGD SGD SGD SGD
Learning rate 0.2 0.2 0.03 0.1 0.2 0.001 0.2 0.03 0.02
Momentum 0.9 0.9 0.4 0.9 0.9 0.9 0.9 0.4 0.0
L1 regularization 0.0 0.0 1e-4 0.0 1e-5 0.0 5e-6 1e-4 0.0
L2 regularization 0.0 0.0 1e-5 3e-3 1e-4 0.0 5e-5 1e-5 0.0

B.5 IID and Client Sampling

This section includes the results of additional experiments on IID distribution and client sampling for
MNIST, FMNIST, and CIFAR-10. Across all three datasets, we observe consistent trends. Reducing the
fraction of clients participating (from all clients to 10%) moderately decreases accuracy for all methods,
and non-IID settings introduce additional accuracy penalties. However, MAPO’s performance remains
robust in these more demanding scenarios; it routinely stays close to FedAvg’s high-accuracy results
while maintaining significant communication savings. This resilience suggests that MAPO’s approach
scales well to heterogeneous data distributions and partial-participation regimes, crucial in large-scale
FL deployments.

Table B.6: Extrapolated MNIST results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 99.6% 100% 99.5% 100% 99.3% 100% 98.9%
Sparse 10.0% 93.9% 12.0% 93.6% 13.3% 93.4% 15.3% 92.1%
Quantize 22.0% 98.8% 25.0% 98.5% 29.0% 98.2% 31.3% 97.6%
EvoFed 6.5% 99.4% 7.0% 99.2% 8.5% 99.0% 9.4% 98.5%
FedLoRU 22.0% 95.0% 25.0% 94.7% 28.2% 94.3% 30.2% 93.8%
MAPO 2.0% 99.5% 2.3% 99.3% 2.7% 99.0% 2.9% 98.5%
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Table B.7: Extrapolated FMNIST results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 91.5% 100% 91.0% 100% 90.0% 100% 89.2%
Sparse 16.0% 84.0% 19.0% 83.5% 21.0% 82.0% 24.1% 81.1%
Quantize 16.0% 89.7% 19.0% 89.2% 21.0% 88.0% 24.1% 87.1%
EvoFed 4.5% 87.0% 5.5% 86.5% 6.8% 85.5% 7.6% 84.7%
FedLoRU 12.0% 76.8% 14.0% 76.2% 15.5% 75.0% 17.9% 74.1%
MAPO 2.0% 90.0% 2.3% 89.6% 2.7% 88.8% 3.1% 88.0%

Table B.8: Extrapolated CIFAR-10 results for IID vs. non-IID and full vs. 10% client participation.

IID Non-IID

All clients 10% clients All clients 10% clients

Method Com. Acc. Com. Acc. Com. Acc. Com. Acc.

FedAvg 100% 73.0% 100% 72.0% 100% 70.0% 100% 69.0%
Sparse 1.8% 41.0% 2.0% 40.0% 2.4% 38.0% 2.7% 37.2%
Quantize 10.0% 71.0% 12.0% 70.0% 13.0% 68.5% 15.2% 67.4%
EvoFed 2.0% 43.0% 2.5% 42.0% 3.0% 40.5% 3.4% 39.5%
FedLoRU 1.1% 27.0% 1.3% 26.0% 1.5% 24.5% 1.7% 23.5%
MAPO 0.8% 71.5% 0.9% 70.8% 1.0% 69.2% 1.2% 68.3%

B.6 Proof of Definitions and Propositions

Definition B.6.1 (Communication Overhead Rate). Let ∆W ∈ IRd1×d2 be the update matrix
of a model. Suppose the factorization of ∆W as ∆W = BA, where A ∈ IRq×d2 is a fixed random
matrix and B ∈ IRd1×q is a trainable matrix with q ≤ min(d1, d2) being the factorization rank. The
communication overhead rate COrate is defined as the ratio of the size of B to the size of ∆W :

COrate = size(B)
size(∆W ) = q

d2
.

Definition B.6.2 (Reconstruction Error Rate). Using the same factorization as Theorem 2.3.2, the
reconstruction error rate is the expected ratio of the reconstruction error to the original model update.
Given full-rank random reconstruction (Theorem 2.3.1), it is expressed as:

EA
[
∥∆W −BA∥2

2
]

∥∆W∥2
2

= 1− q

d2
.

Proof. Let ∆W = [∆w1 ∆w2 · · · ∆wd1 ], where each column ∆wi ∈ IRd2 . Similarly, the reconstruction
BA can be written as [b1A b2A · · · bd1A], where each bi ∈ IRq is a trainable matrix. The reconstruction
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error is given by:

∥∆W −BA∥2
2 =

d1∑
i=1
∥∆wi − biA∥2

2.

The projection of ∆wi onto the subspace spanned by A is PA∆wi. The error rate E is defined as:

E = ∥∆wi −∆wiPA∥2
2

∥∆wi∥2
2

.

Using the Pythagorean theorem:

∥∆wi∥2
2 = ∥∆wiPA∥2

2 + ∥wi −∆wi PA|22,

we rewrite E as:
E = ∥∆wi∥

2
2 − ∥∆wiPA∥2

2
∥∆wi∥2

2
= 1− ∥∆wiPA∥

2
2

∥∆wi∥2
2
.

The expected value of ∥∆wiPA∥2
2 for a full-rank random Gaussian projection is:

E[∥∆wiPA∥2
2] = q

d2
∥∆wi∥2

2.

Substituting this into E:

E[∥∆wi − biA∥2
2] = 1− E[∥∆wiPA∥2

2]
∥∆wi∥2

2
= 1−

p
d∥∆wi∥2

2
∥wi∥2

2
= 1− q

d2
.

Applying this to each column ∆∆wi of ∆W , we obtain:

EA

[
d1∑
i=1
∥∆wi − biA∥2

2

]
=

d1∑
i=1

EA
[
∥∆wi − (∆wi)PA∥2

2
]
.

Using the expected error formula:

=
d1∑
i=1

(
1− q

d2

)
∥∆wi∥2

2 =
(

1− q

d2

) d1∑
i=1
∥∆wi∥2

2.

Since ∥∆W∥2
2 =

∑d1
i=1 ∥∆wi∥2

2, we get:

EA
[
∥∆W −BA∥2

2
]

=
(

1− q

d2

)
∥∆W∥2

2.

Proposition B.6.3 (Single-Vector Factorization). Let ∆W , A, and B be factorizations of a single
layer of the network as in Theorem 2.3.2. By reshaping ∆W into ∆W ′ ∈ IR1×d1d2 the factorization of
∆W ′ = B′A′ where A′ ∈ IRp×d1d2 and B′ ∈ IR1×p can achieve the same reconstruction error and
communication overhead to the conventional factorization of ∆W when p = qd1.

Proof of Error Preservation. In the single-vector setup, ∆W ′ ∈ IRd1d2 is projected onto a subspace of
dimension p. From random projection theory (as used in Theorem 2.3.3), if A′ is sampled such that
rank(A′) = p, then:

E
[
∥∆W ′ −B′A′∥2

2
∥∆W ′∥2

2

]
= 1− p

d1d2
.

Substituting p = qd1 gives:
1− qd1

d1d2
= 1− q

d2
.

Hence, the expected reconstruction error satisfies:

E
[
∥∆W ′ −B′A′∥2

2
]

=
(

1− q

d2

)
∥∆W ′∥2

2,

which matches the original factorization.
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Proof of Communication Preservation. For ∆W ′∈IRd1d2 , with the total size size(∆W ′) = d1d2, we have
the communication overhead as:

size(B′) = p = qd1.

Thus, the communication overhead is:

CO′
rate = size(B′)

size(∆W ′) = qd1
d1d2

= q

d2
,

which matches the original overhead.
Since both the expected reconstruction error and the communication overhead remain unchanged,

the single-vector factorization with p = qd1 is equivalent in terms of efficiency.

Proposition B.6.4 (Multi-Layer Factorization). Let ∆Wi, Ai, and Bi be single-vector factoriza-
tion of i-th layer of the n-layered network as in Theorem 2.3.4. By concatenating the reshaped weights
∆Wi into ∆W ′ ∈ IR1×d, where d =

∑n
i=1 d

i
1d
i
2. The factorization of ∆W ′ = B′A′ where A′ ∈ IRp×d

and B′ ∈ IR1×p can achieve the same reconstruction error and communication overhead to the
single-vector factorization applied to each ∆Wi when p = nqd1.

Proof of Error Preservation. For each layer i, a random full-rank matrix Ai ∈ IRq×di2 yields an expected
squared reconstruction error

E
[
∥∆Wi −BiAi∥2

F

]
=
(

1 − q

di2

)
∥∆Wi∥2

F .

Flattening ∆Wi into ∆W ′
i ∈ IR(di1d

i
2)×1, a single-vector projection of dimension q di1 preserves this same

error ratio (cf. Theorem 2.3.4).
When we concatenate all ∆W ′

i into ∆W ′ ∈ IR1×d, we form a block-structured vector. Let p := n q

and let A′ ∈ IRp×d be constructed from a Gaussian distribution. By the standard random-projection
argument in dimension d with subspace size p,

E
[
∥∆W ′ −B′A′∥2

2

]
=
(

1 − p

d

)
∥∆W ′∥2

2 =
(

1 − p

Nd1d2

)
∥∆W ′∥2

2.

Since p = Nqd1, the overall ratio matches applying single-vector factorizations of rank q to each ∆W ′
i

individually.

Proof of Communication Preservation. For each layer i, the single-vector factorization of ∆Wi introduces

size(Bi) = q di1, size(∆Wi) = di1 d
i
2, hence size(Bi)

size(∆Wi)
= q

di1
.

Concatenating all ∆W ′
i into ∆W ′ ∈ IR1×d gives size(∆W ′) = d, with

d =
N∑
i=1

di1 d
i
2.

Meanwhile, in the multi-layer factorization, the new trainable vector B′ ∈ IR1×p has

size(B′) = p = N q.

Thus
size(B′)

size(∆W ′) = N q∑N
i=1
(
di1 d

i
2
) ,
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which matches the total overhead of N individual rank-q factorizations (one per layer) in aggregate.
Consequently, the communication overhead rate is also preserved.

Since both the expected reconstruction error (per layer or in total) and the communication overhead
remain the same, choosing p = N q for ∆W ′ is equivalent to applying single-vector factorization of rank
q separately to each layer.

Proposition B.6.5 (MAPO Factorization). Let ∆W , A, B, and rank p be a multi-layer factorization
of a network as defined in Theorem 2.3.5. By reshaping ∆W ∈ IR1×d into ∆W ′ ∈ IRk×⌈d/k⌉, and
the factorization of ∆W ′ = B′A′ where A′ ∈ IR1×⌈d/k⌉ and B′ ∈ IRk×1, we can achieve the same
reconstruction error and communication overhead to the multi-layer factorization of ∆W when
k = p, while reducing the memory by a factor of k2.

Proof of Error Preservation. Since ∆W ∈ IR1×d is reshaped into ∆W ′ ∈ IRk×⌈d/k⌉, we still have ∥∆W ′∥2
F =

∥∆W∥2
2. When A′ ∈ IR1×⌈d/k⌉ is a suitable random projection (and B′ ∈ IRk×1 is fit accordingly), the

rank-1 subspace of dimension 1 within ⌈d/k⌉ induces the known expected error ratio

E
[
∥∆W ′ −B′A′∥2

F

]
=
(
1− 1

⌈d/k⌉
)
∥∆W ′∥2

F ,

since the ambient dimension is k × ⌈d/k⌉ ≈ d. By taking k = p, we obtain (via standard random-
projection arguments) the matching error ratio 1− p/d, up to negligible rounding. Therefore:

E
[
∥∆W ′ −B′A′∥2

F

]
=
(
1− p

d

)
∥∆W ′∥2

F ,

Proof of Communication Preservation. The matrix B′ ∈ IRk×1 has size k in total. Meanwhile, ∆W ′ ∈
IRk×⌈d/k⌉ has size k × ⌈d/k⌉ ≈ d. Thus

size(B′)
size(∆W ′) = k

⌈d/k⌉ k
≈ k

d
= p

d
.

Setting k = p matches the original ratio p
d from B ∈ IRp×1 in the multi-layer factorization.

Proof of Memory Reduction by Factor k2. In standard rank-p factorizations for ∆W ∈ IR1×d, one typ-
ically stores a p × d projection plus a 1 × p vector, whose total size scales as dp + p. By contrast,
A′ ∈ IR1×⌈d/k⌉ plus B′ ∈ IRk×1 has combined size ⌈d/k⌉ + k. When k = p, the ratio of these sizes can
be shown to drop by a factor of approximately k2. Hence, the approach allocates k2 times less memory
than a naive p× d plus 1× p arrangement. As p = k

dp+ p

⌈d/k⌉+ k
= dk + k

⌈d/k⌉+ k
≈ d+ 1
d/k2 + 1 ≈ k

2

Thus, the factorization ∆W ′ = B′A′ with k = p exactly preserves the original rank-p error and
overhead while using k2-fold less memory.
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B.7 Proof of Theorem

B.7.1 Assumptions and Preliminaries

We restate the key assumptions required for the convergence analysis.

Assumption B.7.1. For each j,Lj(v) is β-smooth, i.e.,
∥∥∇Lj(u)−∇Lj(v)

∥∥ ≤ β∥u−v∥ for any u, v.

Assumption B.7.2. Variance of the stochastic gradient of Dj is bounded for each client j, i.e.,

E
[∥∥∥∇Lj(W )− ∇̃Lj(W )

∥∥∥2]
≤ σ2

l

.

Lemma B.7.3 (Johnson-Lindenstrauss Lemma). Given 0 < ϵ < 1, a set of points {x1, x2, . . . , xM} ⊂
IRd, and a target dimension k = O

(
logM
ϵ2

)
, there exists a random linear mapping P ∈ IRd×k such that

for all i, j:
(1− ϵ)∥xi − xj∥2 ≤ ∥xiP − xjP∥2 ≤ (1 + ϵ)∥xi − xj∥2.

In our context, the random projection matrices Bt,j and reconstruction matrices At satisfy the JL
property with high probability.

B.7.2 Proof of Theorem 1

Theorem B.7.1. Let the learning rate satisfy ηt ≤ 1−4ϵ
4β(1+ϵ) . Then, the algorithm achieves the bound:

1
4HT

T−1∑
t=0

ηtE
[∥∥∇L(W t)

∥∥2
]
≤

E
[
L(W 0)

]
− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

1
HT

T−1∑
t=0

η2
t ,

where HT =
∑T−1
t=0 ηt, ϵ is JL Lemma distortion parameter, and L∗ is the minimum value of L(W ).

Proof. By the β-smoothness of L(W ) and taking expectation on both sides, we have

E
[
L(W t+1)− L(W t)

]
≤ E

[〈
∇L(W t),W t+1 −W t

〉]
+ β

2E
[∥∥W t+1 −W t

∥∥2]
. (B.1)

Using the update rule W t+1 = W t − ηtBtAt, where Bt = 1
M

∑M
j=1 B

t,j , we can rewrite the first
term as:

E
[〈
∇L(W t),W t+1 −W t

〉]
= −ηtE

[〈
∇L(W t), BtAt

〉]
= −ηtE

〈∇L(W t),

 1
M

M∑
j=1

Bt,j

At

〉
= −ηtE

〈∇L(W t), 1
M

M∑
j=1

Bt,jAt

〉 .
We decompose Bt,jAt as:

∇̃Lj(W t) = Bt,jAt + et,j ,

where et,j = ∇̃Lj(W t)−Bt,jAt is the projection error.
Substituting back, we have:

E = E
[〈
∇L(W t),W t+1 −W t

〉]
= −ηtE

〈∇L(W t), 1
M

M∑
j=1

(
∇̃Lj(W t)− et,j

)〉
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Separating it into A1 and A2:

E = −ηtE

〈∇L(W t), 1
M

M∑
j=1
∇̃Lj(W t)

〉
︸ ︷︷ ︸

A1

+ ηtE

〈∇L(W t), 1
M

M∑
j=1

et,j

〉
︸ ︷︷ ︸

A2

.

We will now concentrate on A1 as:

A1 = −ηtE

〈∇L(W t), 1
M

M∑
j=1
∇Lj(W t)

〉
= − ηt

M

M∑
j=1

E
[〈
∇L(W t),∇Lj(W t)

〉]
=
(a)
− ηt

2M

M∑
j=1

{
E
[
∥∇L(W t)∥2]+ E

[∥∥∥∇Lj(W t)
∥∥∥2
]}

+ ηt
2 E


∥∥∥∇L(W t)− 1

M

M∑
j=1
∇Lj(W t)︸ ︷︷ ︸

=0

∥∥∥2


= −ηt2 E

[
∥∇L(W t)∥2]− ηt

2M

M∑
j=1

E
[∥∥∥∇Lj(W t)

∥∥∥2
]

where (a) uses ⟨a, b⟩ = 1
2{||a||

2 + ||b||2 − ||a− b||2}. We now turn our attention to A2 as:
Next, we focus on A2:

A2 = ηtE

〈∇L(W t), 1
M

M∑
j=1

et,j

〉
≤
(a)

ηt
4 E

[∥∥∇L(W t)
∥∥2
]

+ ηtE


∥∥∥∥∥∥ 1
M

M∑
j=1

et,j

∥∥∥∥∥∥
2


≤
(b)

ηt
4 E

[∥∥∇L(W t)
∥∥2
]

+ ηt
M

E


∥∥∥∥∥∥
M∑
j=1

et,j

∥∥∥∥∥∥
2


≤
(c)

ηt
4 E

[∥∥∇L(W t)
∥∥2
]

+ ϵηt
M

E


∥∥∥∥∥∥
M∑
j=1
∇̃Lj(W t)

∥∥∥∥∥∥
2


≤
(d)

ηt
4 E

[∥∥∇L(W t)
∥∥2
]

+ 2ϵηt
M

M∑
j=1

{
E
[∥∥∇Lj(W t)

∥∥2]+ E
[∥∥∥∇̃Li(W t)−∇Lj(W t)

∥∥∥2
]}

≤
(e)

ηt
4 E

[∥∥∇L(W t)
∥∥2
]

+ 2ϵηt
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2ϵη2
t σ

2
l
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where (a) uses ⟨a, b⟩ ≤ 1
4∥a∥

2 +∥b∥2, and (b) follows Jensen’s inequality, (c) comes from JL Lemma,
(d) follows the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, and (e) is based on Assumption 2. On the other
hand, we can also place a bound on the second term E

[
∥W t+1 −W t∥2] as shown below:

E
[
∥W t+1 −W t∥2] = E

[∥∥ηtBtAt∥∥2] = E


∥∥∥∥∥∥ηt
 1
M

M∑
j=1

Bt,j

At

∥∥∥∥∥∥
2


≤
(a)

2η2
tE


∥∥∥∥∥∥ 1
M

M∑
j=1
∇̃Lj(W t)

∥∥∥∥∥∥
2
+ 2η2

tE


∥∥∥∥∥∥ 1
M

M∑
j=1

{
Bt,jAt − ∇̃Lj(W t)

}∥∥∥∥∥∥
2


≤
(b)

2η2
t

M
E


∥∥∥∥∥∥
M∑
j=1
∇̃Lj(W t)

∥∥∥∥∥∥
2
+ 2η2

t

M
E


∥∥∥∥∥∥
M∑
j=1

{
Bt,jAt − ∇̃Lj(W t)

}∥∥∥∥∥∥
2


= 2η2
t

M
E


∥∥∥∥∥∥
M∑
j=1
∇̃Lj(W t)

∥∥∥∥∥∥
2
+ 2η2

t

M
E


∥∥∥∥∥∥
M∑
j=1

et,j

∥∥∥∥∥∥
2


≤
(c)

4η2
t

M

M∑
j=1

{
E
[∥∥∇Lj(W t)

∥∥2]+ E
[∥∥∥∇̃Li(W t)−∇Lj(W t)

∥∥∥2
]}

+ 2η2
t

M
E


∥∥∥∥∥∥
M∑
j=1

et,j

∥∥∥∥∥∥
2


≤
(d)

4η2
t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2η2
t

M
E


∥∥∥∥∥∥
M∑
j=1

et,j

∥∥∥∥∥∥
2
+ 4η2

t σ
2
l

≤
(e)

4η2
t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2ϵη2
t

M
E


∥∥∥∥∥∥
M∑
j=1
∇̃Lj(W t)

∥∥∥∥∥∥
2
+ 4η2

t σ
2
l

≤
(f)

4η2
t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]

+ 4ϵη2
t

M

M∑
j=1

{
E
[∥∥∇Lj(W t)

∥∥2]+ E
[∥∥∥∇̃Lj(W t)−∇Lj(W t)

∥∥∥2
]}

+ 4η2
t σ

2
l

≤
(g)

4η2
t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 4ϵη2
t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 4ϵη2
t σ

2
l + 4η2

t σ
2
l

= 4(1 + ϵ)η2
t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 4(1 + ϵ)η2
t σ

2
l

where (a), (c), and (f) are based on the inequality ∥a+b∥2 ≤ 2∥a∥2 +2∥b∥2, (b) comes from Jensen’s
inequality, (d), (g) derive from Assumption 2, and (e) comes from JL Lemma.
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By utilizing the established bounds for E
[
⟨∇L(W t),W t+1 −W t⟩

]
and E

[
∥W t+1 −W t∥2] to Equa-

tion (B.1), we derive the following:

E
[
L(W t+1)− L(W t)

]
≤ E

[
⟨∇L(W t),W t+1 −W t⟩

]
+ β

2E
[
∥W t+1 −W t∥2]

≤ −ηt2 E
[
∥∇L(W t)∥2]− ηt

2M

M∑
j=1

E
[∥∥∥∇Lj(W t)

∥∥∥2
]

︸ ︷︷ ︸
A1

+ ηt
4 E

[∥∥∇L(W t)
∥∥2
]

+ 2ϵηt
M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2ϵη2
t σ

2
l︸ ︷︷ ︸

A2

+ 2β(1 + ϵ)η2
t

M

M∑
j=1

E
[∥∥∇Lj(W t)

∥∥2]+ 2β(1 + ϵ)η2
t σ

2
l

= −ηt4 E
[
∥∇L(W t)∥2]

+ ηt
M

{
−1

2 + 2ϵ+ 2β(1 + ϵ)ηt
}

︸ ︷︷ ︸
≤0 if we choose ηt≤ 1−4ϵ

4β(1+ϵ)

M∑
j=1

E
[∥∥∥∇Lj(W t)

∥∥∥2
]

+ 2η2
t (ϵ+ β + βϵ)σ2

l

≤ −ηt4 E
[
∥∇L(W t)∥2]+ 2η2

t (ϵ+ β + βϵ)σ2
l

Ultimately, by applying the telescoping sum over t = 0, 1, . . . , T−1, we arrive at the following result:

L∗ − E
[
L(W 0)

]
≤
T−1∑
t=0
−ηt4 E

[∥∥∇L(W t)
∥∥2
]

+
T−1∑
t=0

2η2
t (ϵ+ β + βϵ)σ2

l

In this case, L∗ stands for the minimum of L(W ).
By performing a division by HT =

∑T−1
t=0 ηt on both sides and utilizing some algebraic adjustments,

we arrive at the following expression:

1
4HT

T−1∑
t=0

ηtE
[∥∥∇L(W t)

∥∥2
]
≤

E
[
L(W 0)

]
− L∗

HT
+ 2(ϵ+ β + βϵ)σ2

l

(
1
HT

T−1∑
t=0

η2
t

)
(B.2)

With a decreasing learning rate such as ηt = η0
t+1 , we observe that HT =

∑T−1
t=0 ηt tends towards

infinity as T grows, while
∑T−1
t=0 η2

t remains bounded. Therefore, as T → ∞, the upper bound in
Equation (B.2) converges to 0, confirming the convergence to a stationary point.
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B.8 Complexity Analysis and MAPO Flexibility

Theorems 2.3.4 to 2.3.6 discussed how the error rate and accuracy of low-rank factorization are
only determined by the size of the projection vector, regardless of reshaping and vectorization of layers.
Although they prove that MAPO can achieve the same performance as layer-wise factorization given the
same projection (communication) budget, we did not discuss the memory and computation complexity.
In this section, we show that MAPO can effectively reduce computation. Furthermore, we show how
layer-wise low-rank adaptation (LoRA and FA-LoRA) limits the model trade-offs and how MAPO can
offer more flexibility.

B.8.1 Computational Complexity

We compute the memory and computation cost for matrix allocation and multiplication in terms
of standard matrix multiplication. Given matrices A ∈ IRn×m and B ∈ IRp×n, the complexities for
computing C = BA are:

MemoryC=AB = O(nm+ pn+ pm),

TimeC=BA = O(mnp).

We aim to demonstrate that factorization under MAPO, where W ∈ IRk×⌈ dk ⌉ is factorized into A ∈
IR1×⌈ dk ⌉ and B ∈ IRk×1, reduces the memory and time complexity of the LoRA factorization for an
n-layered model. In LoRA, each layer i is factorized as wi ∈ IRd

1
i×d2

i into A ∈ IRq×d1
i and B ∈ IRd2

i×q.
We demonstrate that, given the same communication budget and factorization error rate, MAPO

significantly reduces the computational cost compared to LoRA. This reduction becomes more pro-
nounced as the number of layers or the selected rank increases. Specifically, MAPO achieves a memory
reduction by a factor of q2 and a computation reduction by a factor of q, where q is the chosen
LoRA rank. Furthermore, even when q = 1, MAPO still achieves memory savings as

∑n
i̸=j d

1
i d

2
i scales

with the number of layers. The only scenario where MAPO and LoRA yield identical efficiency is when
the model consists of a single layer (n = 1) and a rank-1 factorization (q = 1).

Memory Complexity

Given these definitions, the memory complexities for MAPO and LoRA are:

MemoryMAPO = O

(⌈
d

k

⌉
+ k +

⌈
d

k

⌉
k

)
≈ O

(
d

k
+ k + d

)
,

MemoryLoRA = O

(
n∑
i=1

(d1
i q + d2

i q + d1
i d

2
i )
)

= O

(
n∑
i=1

d1
i q +

n∑
i=1

d2
i q +

n∑
i=1

d1
i d

2
i

)
.

Given the same communication budget k =
∑n
i=1 qd

1
i and d =

∑n
i=1 d

1
i d

2
i , we rewrite LoRA’s memory

complexity as:

MemoryLoRA = O

(
q

n∑
i=1

d2
i + k + d

)
.
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For MAPO to have lower memory usage than LoRA, the following condition must hold:

MemoryMAPO ≤ MemoryLoRA,

d

k
+ k + d ≤ q

n∑
i=1

d2
i + k + d,

d

k
≤ q

n∑
i=1

d2
i .

Replacing k and d with their respective summation terms:
n∑
i=1

d1
i d

2
i ≤ q2

n∑
i=1

d1
i

n∑
i=1

d2
i ,

≤ q2
n∑
i=1

d1
i d

2
i + q2

n∑
i̸=j

d1
i d

2
i .

Thus, the inequality always holds under the conditions d1
i , d

2
i , q, n ≥ 1, and equality occurs if q = n = 1,

which corresponds to a model with a single layer and rank-1 factorization. In this case, MAPO and
LoRA perform the same decomposition.

Time Complexity

Given the definitions, we can express the time complexities for MAPO and LoRA as follows:

TimeMAPO = O

(⌈
d

k

⌉
k

)
≈ O(d),

TimeLoRA = O

(
n∑
i=1

qd1
i d

2
i

)
.

Since d =
∑n
i=1 d

1
i d

2
i , we can rewrite LoRA’s time complexity as:

TimeLoRA = O(qd).

For MAPO to have a lower time complexity than LoRA, the following condition must hold:

TimeMAPO ≤ TimeLoRA,

d ≤ qd.

This condition is always true for d, q ≥ 1, and equality occurs when q = 1.
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B.8.2 MAPO Flexibility

Suppose our neural network has n layers. Let:

Wi ∈ IRd
1
i×d2

i for each layer i = 1, . . . , n.

Let d =
∑n
i=1 d

1
i d

2
i be the total number of parameters (i.e., the sum of the entries across all layers). Let

d1 =
n∑
i=1

d1
i .

In many treatments of LoRA, the main communication or factor-size bottleneck arises from a factor that
scales linearly with q · d1

i .
LoRA Factorization Per Layer. LoRA factorizes each layer Wi of dimension d1

i ×d2
i with a fixed

rank q. Concretely,
Wi ≈ Wi +BiAi, Ai ∈ IRq×d2

i , Bi ∈ IRd
1
i×q.

The number of additional parameters introduced by each low-rank pair (Ai, Bi) is

d1
i · q︸ ︷︷ ︸

size of Bi

+ q · d2
i︸ ︷︷ ︸

size of Ai

= q ( d1
i + d2

i ).

Summing over all n layers,
n∑
i=1

(
d1
i · q + q · d2

i

)
= q

n∑
i=1

(
d1
i + d2

i

)
.

Therefore, we can write the communication cost as:

Communication cost ≈ q

n∑
i=1

d1
i = q d1.

Since q must be an integer, we see that the communication overhead comes in integer multiplesd1,
as:

LoRA total communication ∈ { q d1 | q = 1, 2, . . . }.

There is no way to select a non-integer q. Hence communication budgets strictly between d1 and
2 d1 (or between q d1 and (q + 1)d1) are not possible in layer-wise LoRA. Therefore, Any attempt to
finely tune the communication or factor budget (e.g., to 1.5 d1) is disallowed by LoRA’s integral-rank
requirement. This rigidity is precisely what we seek to overcome in MAPO.

MAPO Factorization. MAPO flattens or reshapes all parameters into one large matrix and then
performs a single low-rank factorization with rank 1. A simplified abstraction is:

1. Reshape w1, . . . , wn into a single matrix W ∈ IRk×⌈d/k⌉, where d =
∑n
i=1 d

1
i d

2
i is the total

parameter count. 2. Factor W ≈ AB, with

A ∈ IR1×⌈d/k⌉, B ∈ IRk×1,

Once all parameters are merged, MAPO can proportionally allocate any communication budget as
k can be selected freely. ⌈

d/k⌉︸ ︷︷ ︸
size of A

+ k︸︷︷︸
size of B

.

Therefore, we can write the total communication as:

MAPO total communication ∈ { k | k = 1, 2, . . . }.

This is particularly important in communication-efficient FL since viable solutions can be found with
communication cost k < d1 or d1 < k < 2d1, which architecture-dependent layer-wise factorization can
not offer.
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Chapter C. Supplementary Material for Chapter 3

C.1 Proof of Proposition 3.3.3

Proposition C.1.1 (Factor-wise aggregation error). Let Wi = BiAi with Bi ∈ Rd×r and Ai ∈ Rr×d

be the rank-r parameters of client i after τ local SGD steps with stepsize η starting from a common
initialization, and denoting the aggregation error as:

E := 1
N

N∑
i=1

BiAi −
( 1
N

N∑
i=1

Bi

)( 1
N

N∑
i=1

Ai

)
.

The expected and worst-case deterministic error bounds are:

(P1)
(
E∥E∥2

F

)1/2
≤ τησAσB√

N
; (P2) ∥E∥F ≤ τ2η2GAGB .

where (P1) assumes unbiased gradients with second moments σ2
A, σ

2
B, and (P2) assumes deterministic

per-step bounds GA, GB. Proof details appear in Appendix C.1.

Proof. Write Aavg = 1
N

∑
iAi, Bavg = 1

N

∑
iBi and the centred deviations ∆Ai := Ai − Aavg, ∆Bi :=

Bi −Bavg. Because
∑
i ∆Ai =

∑
i ∆Bi = 0,

E = 1
N

N∑
i=1

BiAi −BavgAavg = 1
N

N∑
i=1

∆Bi ∆Ai. (A-1)

(P-1) Unbiased stochastic gradients. For each client and step, the SGD update is ∆Ai = −η
∑τ
t=1 g

A
i,t

with E[gAi,t] = 0 and E∥gAi,t∥2
F ≤ σ2

A; similarly for B. Independence across clients implies E[∆Bi] =
E[∆Ai] = 0 and E∥∆Ai∥2

F ≤ τη2σ2
A. Applying Jensen and Cauchy–Schwarz to (A-1):

E∥E∥2
F ≤

1
N2

N∑
i=1

E
[
∥∆Bi∥2

F

]
E
[
∥∆Ai∥2

F

]
≤ τ2η2σ2

Aσ
2
B

N
,

which yields (P-1) after taking the square root.
(P-2) Deterministic bound. With per-step gradient norms bounded by GA, GB , ∥∆Ai∥F ≤

τηGA, ∥∆Bi∥F ≤ τηGB . Insert into (A-1) and apply Cauchy–Schwarz:

∥E∥F ≤
1
N

N∑
i=1
∥∆Bi∥F ∥∆Ai∥F ≤ τ2η2GAGB ,

which is (P-2).

C.2 Table of Results

For the convenience of the reader, we summarize the results of personalization and global training
in Section C.2 and Section C.2, respectively.
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Task Method 1 2 5 10 20 40 80 160 320 640

MNLI

FedAvg 91.72 91.31 90.01 88.71 89.09 88.82 34.27 33.88 34.11 34.60
FedProx 90.67 91.01 89.69 88.83 89.12 88.89 88.65 88.58 34.36 33.70
FedMA 89.89 89.67 89.86 88.99 89.18 88.79 88.88 88.75 88.68 34.72
APriLS 93.48 91.29 91.01 90.43 90.30 89.74 89.69 89.85 89.51 89.61

SST-2

FedAvg 96.06 95.45 94.25 93.00 93.50 50.38 49.94 51.31 49.43 52.22
FedProx 95.05 95.45 94.15 93.15 93.60 92.75 92.61 50.01 49.93 50.13
FedMA 94.25 94.25 94.25 93.50 93.65 93.15 93.36 93.22 50.18 52.67
APriLS 97.30 95.61 94.61 94.44 93.77 93.62 93.73 93.68 93.81 93.54

QNLI

FedAvg 94.26 93.60 92.39 91.16 91.51 50.04 49.74 50.20 50.29 50.11
FedProx 93.39 93.74 92.59 91.52 91.75 91.29 91.21 54.43 52.17 48.21
FedMA 91.66 91.45 91.48 90.74 90.94 90.48 90.57 90.45 51.29 57.56
APriLS 95.15 93.54 92.63 92.33 91.98 91.85 91.91 91.97 91.83 91.74

QQP

FedAvg 88.43 87.61 86.71 85.33 85.68 49.86 49.91 51.13 54.63 43.96
FedProx 88.52 88.95 87.76 86.71 87.06 86.78 49.91 50.10 50.03 49.97
FedMA 86.44 86.72 86.63 85.73 85.86 85.47 85.68 53.15 55.33 43.55
APriLS 90.92 88.77 88.49 87.63 87.61 87.10 87.19 87.36 87.14 87.11

RTE

FedAvg 90.49 89.87 88.78 87.49 87.92 87.77 49.83 52.12 50.09 49.95
FedProx 88.02 88.29 87.18 86.08 86.41 85.98 86.06 53.57 55.85 45.97
FedMA 88.27 88.08 88.25 87.44 87.67 87.20 87.41 87.30 58.69 48.77
APriLS 91.22 89.35 88.98 88.13 87.92 87.42 87.61 87.18 87.21 87.37

AVG

FedAvg 92.19 91.57 90.43 89.14 89.54 65.37 46.74 47.30 47.71 46.17
FedProx 91.13 91.49 90.27 89.26 89.59 89.14 81.69 59.34 48.47 45.60
FedMA 90.10 90.03 90.09 89.28 89.46 89.02 89.18 82.57 60.83 47.45
APriLS 93.61 91.71 91.14 90.59 90.32 89.95 90.03 90.01 89.90 89.87
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Task Method 1 2 5 10 20 40 80 160 320 640

MNLI

FedAvg 87.33 87.59 87.49 87.11 86.71 33.81 33.54 33.97 34.56 33.96
FedProx 87.65 87.34 87.77 87.28 86.76 87.07 33.57 34.07 34.11 33.90
Freeze-A 87.68 87.62 87.77 87.44 87.27 87.19 87.16 34.28 34.50 33.64
FedMA 87.87 87.91 87.66 87.59 87.19 87.40 87.46 87.02 34.64 34.13
Full-Rrank (KnOTS) 89.91 88.98 89.39 89.03 88.91 88.93 88.69 88.79 89.23 88.85
APriLS 89.71 89.01 89.28 88.92 88.97 88.76 88.58 88.82 89.13 88.75

SST-2

FedAvg 93.69 93.51 93.81 93.40 93.26 50.77 50.16 49.77 49.53 50.38
FedProx 93.92 93.93 93.95 93.55 93.41 93.27 49.63 50.30 50.03 49.99
Freeze-A 93.85 93.96 93.97 93.77 93.31 93.35 93.23 49.99 49.63 50.30
FedMA 94.50 94.41 94.51 94.11 93.76 93.75 93.80 94.00 49.62 49.76
Full-Rrank (KnOTS) 96.09 95.32 95.42 95.17 95.00 95.17 94.68 94.96 94.99 94.95
APriLS 95.91 95.18 95.27 94.99 94.93 95.18 94.68 94.85 95.15 94.91

QNLI

FedAvg 89.07 88.98 88.93 88.83 88.56 50.73 49.80 50.03 50.09 50.02
FedProx 89.61 89.60 89.28 89.12 88.77 88.87 49.77 49.64 50.02 50.13
Freeze-A 89.37 89.48 89.76 89.30 89.08 89.13 88.96 50.40 49.72 50.27
FedMA 89.92 89.69 89.91 89.53 89.25 89.11 89.11 89.16 49.60 50.40
Full-Rrank (KnOTS) 91.36 90.92 90.64 90.48 90.59 90.96 90.82 90.20 90.75 90.61
APriLS 91.38 90.76 90.70 90.63 90.47 90.86 90.66 90.36 90.92 90.53

QQP

FedAvg 81.76 81.93 82.00 81.55 81.01 50.60 50.05 49.68 49.66 50.45
FedProx 82.38 82.11 82.16 82.06 81.63 81.96 49.67 50.05 50.08 50.25
Freeze-A 82.54 82.76 82.55 82.39 82.13 81.92 81.97 50.29 50.06 50.18
FedMA 82.73 82.86 82.81 82.64 82.42 82.05 82.34 82.09 50.03 50.37
Full-Rrank (KnOTS) 84.44 83.77 83.47 83.47 83.57 83.14 83.23 83.49 83.37 83.08
APriLS 84.29 83.62 83.58 83.31 83.53 83.20 83.15 83.32 83.42 83.00

RTE

FedAvg 86.94 87.11 86.72 86.61 86.25 50.68 50.13 50.17 50.09 50.02
FedProx 86.90 87.13 87.13 86.72 86.19 86.16 49.95 50.01 50.17 50.25
Freeze-A 87.34 87.38 87.42 86.97 86.70 86.68 86.82 50.07 49.56 50.10
FedMA 87.32 87.21 87.35 87.03 86.91 86.91 86.52 86.75 49.63 50.15
Full-Rrank (KnOTS) 88.96 88.41 88.49 88.16 88.28 88.04 88.06 88.00 88.26 88.43
APriLS 88.85 88.21 88.39 88.09 88.38 88.08 87.90 88.17 88.25 88.46

AVG

FedAvg 87.16 88.18 87.79 87.14 87.15 43.61 42.72 43.19 42.79 43.29
FedProx 87.29 88.02 87.86 87.35 87.35 87.46 42.12 42.99 42.88 43.08
Freeze-A 87.76 88.04 87.89 87.57 87.30 87.65 87.23 54.61 46.29 46.46
FedMA 88.07 88.22 87.84 87.78 87.51 87.44 87.45 87.00 46.19 46.56
Full-Rrank (KnOTS) 90.15 89.88 89.88 89.86 89.67 89.85 89.70 89.89 89.96 89.99
APriLS 90.03 89.76 89.84 89.67 89.66 89.75 89.58 89.64 89.87 89.93
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